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Abstract — Security is becoming a major issue in our highly
networked and computerized era. Malicious code detection is
an essential step towards securing the execution of applications
in a highly inter-connected context. In this paper, we present
a formal definition of Java dynamic semantics. This seman-
tics has been used as a basis to develop efficient, rigorous and
provably correct static analysis tools and a certifying compiler
aimed to detect and prevent the presence of malicious code
in Java applications. We propose a small step operational se-
mantics of a large subset for Java. The latter includes features
that have not been completely addressed in the related work
or addressed in another semantics style. We provide a fully-
fledged semantic handling of exceptions, reachable statements,
modifiers and class initialization.
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dynamic semantics, operational semantics, small step seman-
tics.

1. Motivation

Security vulnerabilities occur at two levels, the communica-
tion level and the application level. At the communication
level the use of cryptographic protocols aims at protecting
from security breaches. This issue is being actively stud-
ied in order to ensure the absence of flaws in such proto-
cols [1, 7, 11–13]. At the application level, malicious code
could be inserted in applications without the consent nor
the knowledge of end users. This malicious code can cause
data corruption, data divulgation to non authorized users,
an extensive use of system resources leading to denial of
service, etc. Existing techniques to detect such a code are
ad-hoc techniques based on merely syntactic analysis to de-
tect the so-called virus signatures. They can only be effec-
tive in the detection of well known and cataloged malicious
code. In our research group, we explore three approaches
to address malicious code detection: dynamic analysis of
code, static analysis of code and self certifying compilation.
These approaches are described in [3, 4, 9, 10]. The main
idea underlying these approaches is the use of language
technology in order to address security issues. In order to
make our analysis reliable we base all our techniques on
formal and rigorous foundations. For this purpose we elab-
orated a static semantics for a large subset of the Java lan-
guage [8]. We present in this paper a dynamic operational
small-step semantics for the same Java language subset.
Lately, a surge of interest has been expressed in the elab-
oration of semantic foundations for Java. This interest is

not only motivated by popular appeal and fashion consid-
erations. Indeed, Java has a very sophisticated and subtle
semantics as we will exemplify in the sequel. Moreover,
Java is meant to be widely used in safety-critical embed-
ded systems. Furthermore, Java support for mobile code
through applets poses severe, and very interesting, chal-
lenges to the currently established language technologies
in terms of security. All these factors justify the need for
robust theoretical foundations for Java.
The Java language is, certainly, innovative, but still imma-
ture and unstable. Several modifications were made to its
description, and errors are still present in its implementa-
tions. This is understandable, since the language combines
attractive features, which makes its semantics far from be-
ing straightforward and leads to substantial complexity.
The only available official specification of Java [15] is an in-
formal description that is subject to different interpretations.
Besides, it is rather ambiguous, incomplete and sometimes
not consistent with the behavior of the Java compilers. This
is not acceptable mainly for the properties that have a direct
impact on the security.
We believe that the theoretical investigations of Java se-
mantics are very useful to clarify, correct and complete
its semantics description. It will lead, without any doubts,
to a better understanding of the language, to a more effi-
cient, safe and secure execution. We strongly believe that
a semantics theory for Java is not a luxury but rather a ne-
cessity.
A static semantics description has been elaborated in our
research group and presented in [8]. In the present paper,
we present a dynamic semantics for the same subset.
We believe that the operational semantics style is easy to
understand and to manipulate. Actually, the operational
style does not require complex mathematical tools which
would increase the difficulty to understand the Java lan-
guage.
Our ultimate goal is to provide a complete formal and easy
to use description of the semantic aspects of Java. This will
include static as well as dynamic semantics. Another goal
we would like to achieve is to prove the subject reduction
which guarantees the correctness of our static and dynamic
semantic descriptions. This would also be a guarantee that
the language is correctly designed i.e. the program behav-
ior is consistent with the typing specification. On the other
hand the two semantics could be used as guidelines to en-
sure a correct design of the Java Virtual Machine (JVM).
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The paper is structured as follows. Related work is de-
picted in Section 2. An evaluation of the semantic issues
related to the Java language specification is given in Sec-
tion 3. A short overview of the Java dynamic semantics is
presented in Section 4. Some concluding remarks are ulti-
mately sketched in Section 5 together with some directions
for the future work. The syntax of the language and the
whole semantic rules set are given in an Appendix.

2. Related work

Many investigations for studying the Java language yielded
very interesting results despite the restrictions that have
been adopted.
In a pioneering exploration of Java formal semantics,
Drossopoulou et al. [14] have studied a subset of Java
that includes many features like hiding, overloading and
exceptions. They proposed an operational semantics for
this subset. In order to formalize the evaluation of excep-
tions, it is not obvious to define rules that could represent
the control flow discontinuity which occurs when an ex-
ception is raised. The solution proposed by the authors is
based on the notion of context. A context encompasses all
the enclosing terms up to the nearest enclosing try-catch or
try-catch-finally clause i.e. up to the first possible position
at which the exception might be handled. Other important
features like modifiers and initialization still need to be
formalized. Among the assumptions used in [14], the exe-
cution of a return statement always terminates the execution
of a method. Actually, sometimes we need to execute the
enclosing finally clauses before returning to the caller. This
adds significant complexity when exceptions are considered
in the semantics formalization.
Syme [22] has studied a similar subset, except that he has
included, in addition, the local variables. He used the the-
orem prover Declare in order to validate the elaborated
operational semantics. The validation consists in proving
the soundness of the dynamic semantics w.r.t. the static se-
mantics which he has elaborated. In this work the try-catch,
statement is not considered.
Tobias and Oheimb [18] have designed an operational
semantics for a subset of Java called Bali. They adopted
a big-step natural semantics style for elaborating this se-
mantics. Many features of the Java language are considered
such as exceptions, local variables, etc. However, the au-
thors did not describe all the possibilities when handling the
finally clause. For instance, they did not consider the case
where a return statement occurs before the finally clause is
evaluated.
Boerger and Sculte [5] have elaborated a dynamic se-
mantics of Java by providing an ASM (abstract state ma-
chine) that interprets arbitrary Java programs. They have
considered a subset of Java including initialization, ex-
ceptions and threads. They have exhibited some weak-
nesses in the initialization process as far as the threads are
used. They pointed out that deadlocks could occur in such
a situation.

One of the related work covering almost all Java language
is the work of Alves-Foss et al. [2]. Their semantics covers
the full range of this language excluding concurrency and
the Java APIs. This semantics does not address the mod-
ifiers. Indeed, the evaluation of a field access expression
does not show the modifiers role. Another interesting work
is [16]. In this work the author presents a full treatment of
the exception mechanism. He uses coalgebras in order to
formalize the exception semantics in Java. In [23] the au-
thor extends the work done within the Bali project to cover
exception handling and class initialization. The extension is
elaborated in an axiomatic approach. Cenciarelli et al. [6]
have presented an operational semantics for a significant
subset of Java including threads. The major goal of their
work is to deal with shared memory.
The operational small step style [19] we have adopted to
formalize the dynamic semantics is easy to manipulate and
to understand than the denotational and axiomatic styles. It
is mandatory to understand the semantics of a language in
order to design reliable applications. A precise, formal and
easy to understand semantics specification helps to achieve
this goal. In our work, we put to the treatment of the
exceptions, the class initialization and the modifiers.

3. Semantic issues

The elaboration of a dynamic semantics for Java is a com-
plex task. This complexity is due to many semantic issues
related to the Java language. In the sequel, we highlight
some of these issues.

3.1. Specification evaluation

The first task when elaborating a formal semantics for any
language is to understand the existent informal specifica-
tion of this language and to evaluate it in order to check
whether it is consistent w.r.t. existing compiler reference
implementations. Hence, we have started this work by the
evaluation of the Java language as it is officially speci-
fied in [15]. We have discovered an inconsistency between
the aforementioned specification and the JDK 1.3.0 com-
piler under Linux Redhat 6.2(build Linux JDK 1.3.0 FCS).
It concerns the class initialization process when triggered
by a field access expression. Indeed, in the last clarification
published by SUN Microsystems in [17], null is considered
as a constant expression so every static and final field that
is initialized to null is considered as a constant field [15]
and cannot trigger class initialization. Actually, access to
such a field causes the initialization of the class in which
this field is declared.
This inconsistency pointed out that it is very hard to grasp
all the subtleties of Java semantics. This is especially cru-
cial when designing a compiler for the language.
One can draw two conclusions. First, the language de-
signers would gain if they adopt a less complex semantics.
Second, it is essential to have a non ambiguous specifica-
tion of the language which is easily understandable.
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Table 1
Exception handling

Table 2
Return statement evaluation

3.2. Java semantics is complex

Java is a real-life language that comes with many convenient
features that make its use appealing for the users. The
elaboration of a formal semantics for any significant subset
of it would be a complex task. The mechanisms underlying
some of the interesting features of Java contribute to the
complexity of the language semantics. As an example of
such mechanisms we can cite the exceptions and the class
initialization.

We give, in the sequel, details of the main difficulties or
subtleties we encountered while elaborating our dynamic
semantics.

The exception mechanism in Java has more complex seman-
tics than other exception mechanisms in other languages
due to the finally construct it offers. Actually, a try-catch
statement in Java is designed for handling the exceptions
that can occur during execution. The try clause contains
a block of statements that can raise exceptions. A catch
clause can handle an exception and then the execution con-
tinues normally. A finally clause may appear in the try
statement. This clause is executed whether an exception
has occurred or not. A try clause can be enclosed in an-

other one making the semantics more complex especially
when a return could occur.
The semantics of jumps and exceptions are usually elabo-
rated using continuation-based techniques [20, 21] in order
to preserve the compositionality of the semantic descrip-
tion. Compositionality might be affected by the disconti-
nuity of the control flow caused by jumps or exceptions.
Hence a special care is needed.
A continuation models the rest of the code to be executed
and is used as a parameter in the semantic functions (de-
notational framework) or in the semantic rules (operational
framework). For the sake of clarity, we use in our seman-
tic rules exception tables that help to compute the needed
continuation1.
Table 1 shows two of the most important rules for the eval-
uation of the finally clause. A finally clause can be eval-
uated in the context of an exception �. If this clause does
not raise any exception and if there is no return statement
executed yet then it re-throws the exception �. Another in-
teresting rule shows how the execution must return to the
caller method after a finally clause is executed. Actually, if
there is a return that has been executed and if there is no

1The interested reader can refer to the Appendix for more details.
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enclosing finally (the predicate HandlerlnTable is false), the
execution must return to the calling method after returning
the resulting value of the return statement evaluation. This
is specified in the second rule of Table 1. The previous
discussion shows how complex is the handling of a finally
clause. In fact its semantics depends on whether a return
occurs or not, whether there is another enclosing try or not
and whether there is a current raised exception or not.
The rules corresponding to the try and catch clauses eval-
uation can be found in the Appendix.

3.3. Staged semantics elaboration and its adequacy

Elaborating a dynamic semantics for a reduced subset of
Java cannot provide a full understanding of the specifica-
tions. When this subset is extended to include the omitted
features, a revision of the established rules is often neces-
sary. The dependence of a construct semantics on other
constructs makes a Java staged semantics an inadequate
strategy. For example, to formalize the semantics of a re-
turn statement, it is unavoidable to take in consideration
the finally statement as specified in [15]. The rule of the
Table 2 shows how the semantics of a return depends on
the existence of an enclosing finally. In fact, if there is no
enclosing finally to this return the execution returns to the
calling method. The statements that appear after the return
statement are not necessarily unreachable.

3.4. A deep understanding of the static semantics

Another complexity that we have encountered is that one
cannot elaborate a dynamic semantics without understand-
ing the static one. The class initialization illustrates such
dependency. Actually, a field access expression can trigger
the class initialization if the field is not constant. A con-
stant field is a final, static and initialized by a constant
expression at compile time. This information is defined by
the static semantics.
Another example concerns the method invocation seman-
tics. In fact, to determine the actual invoked method, a dy-
namic search process is needed. This search process is
based on the method signature which is determined by the
static semantics.

4. Short overview of the Java
dynamic semantics

In the sequel, we present some aspects of the Java dynamic
semantics that we have elaborated.

4.1. Grammar of the Java subset

The syntax of the Java subset that we have considered is
given in Tables 13, 14, 15 and 16 of the Appendix. This
syntax has been defined in [8]. Notice that this subset is
a large one.

4.2. Environment

A dynamic environment is denoted �. It consists of a set
of class file representations. Each class or interface repre-
sentation is composed of a set of fields including methods,
fields and the ConstantPool of the classfile. The complete
description of this environment is given in Tables 3 and 4.

4.3. Annotations

The execution of a Java program requires that the compiler
adds some relevant information. For instance, a field access
would be annotated with the descriptor of this field and the
class where it is defined.
Hereafter, we describe the annotations that have been added
in the corresponding cases.

Field access expression. Each field access expression e.f is
annotated with C, the class where this field f is declared,
and D its type (descriptor in the Java terminology).

Method invocation. Each method invocation e:m() is an-
notated with D the method descriptor2 and C the class
where it is declared.

Constructor invocation. An explicit constructor invoca-
tion or new instance creation expression is annotated with
its descriptor D.

Annotated syntax. We present in Table 5 the syntax anno-
tations which correspond to what a Java compiler generates.
The actual syntax that we adopt while elaborating the se-
mantics rules is actually the previously described syntax
in which the annotations in the Table 5 are assumed to be
propagated.

4.4. Notations

Notations:

� Given two sets A and B, A �

�!B denotes the set of
all maps from A to B. A map m 2 A

�

�!B could be
defined by extension as [a0 7! b0 : : : an�1 7! bn�1]
to denote the association of the elements bi’s to ai’s,
ai 2 A et bi 2 B.

� dom(m) denotes the domain of the map m. Given
two maps m and m0, we will write m ym0 the over-
writing of the map m by the associations of the
map m0 i.e. the domain of m ym0 is dom(m) [
dom(m0) and we have (m ym0)(a) = m0(a) if
a 2 dom(m0) and m(a) otherwise.

� s � s0 denotes the disjoint union of the two sets s

and s0.

� S[f  �] denotes the assignment of the value � to
the field f of the structure S.

� � denotes an empty value, cf Section 4.6.

2Descriptor stands for signature in Java terminology.
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Table 3
Environment – Part 1
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Table 4
Environment – Part 2

Table 5
Annotations
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Table 6
Configurations

Table 7
Computable values
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Table 8
Semantic categories

4.5. Intermediate terms

Since we adopted a small step style, we have to represent
intermediate results during the evaluation process. These
intermediate results are formalized as algebra terms and are
denoted intermediate terms. Actually, intermediate terms
consist of terms that involve syntactic entities as well as
computable values. For instance, let T [e] be a Java ex-
pression where T is an array and e is a Java expression.
The evaluation of this expression yields as an intermediate
result T [�] where � stands for a computable value repre-
senting the result of the evaluation of e. Clearly, this inter-
mediate result does not belong to the Java syntax because
the integer values are different from the integer constants
that would appear in a Java source code.

4.6. Configurations

A configuration is a tuple (�;F ; h; t) where � is the ob-
ject exception that is thrown and not yet handled, F is
the frame of the current method, h is the global memory
and t is an intermediate term. For the sake of convenience,
this configuration may appear as (F ; h; t) when no ex-
ception is thrown and not handled. Actually, this is an
abbreviation of (�; F ; h; t) where � is empty, denoting the
absence of exceptions. The configuration may also appear
as (F ; h) where there is no thrown-exception after evaluat-
ing the term t and this term is fully evaluated. The Table 6
shows the configurations used in our semantics. In our con-
figurations the notation �+ represent either an exception �

or the absence of a raised exception denoted by �.

4.7. Computable values

The evaluation of the syntactic constructs of a language us-
ing a formal semantics produces values that are commonly
denoted computable values. We define in Table 7 the com-
putable values manipulated by our dynamic semantics.

A computable value can be a primitive value or a reference
(memory address). We introduce the undefined value (?)
which is used as:

� the value of this in a static method,

� the value of the field ReturnValue in the current frame
if no return statement has been executed yet.

4.8. Memory abstraction

We abstract the memory by a map h which associates
a computable value to a RefValue (cf Table 7) or to a Field-
Record which represents a class field (cf Table 6). In the
map h a FieldRecord always corresponds to a static field.
Notice that a RefValue represents a reference to an object
or to an array.
The following items describe how objects and arrays are
represented in our memory abstraction:

� An object is represented by an ordered pair (Class-
Type, MF) where MF = [F0 7! �0; : : : ; Fn�i 7!
�n�i], ClassType is the concrete type of the object,
Fi is a FieldRecord structure corresponding to a non
static field and �i represents the computable value
associated to this field.

� An array T is represented by an ordered pair
(ClassType, MI) where MI = [0 7! �0; : : : ; n�1 7!
�n�1], n is the dimension of the array and �i is
a computable value associated with T [i].

4.9. Semantic categories

We define in Table 8 the semantic categories manipulated
by our semantics.

4.10. Semantic rules

The evaluation process is formalized as a transformation of
a configuration to a new one. We denote this transforma-
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Table 9
Return statement evaluation

Table 10
Exception handling

tion by � ` (�;F ; h; t) ! (�0;F 0; h0; t0) which says that
an intermediate term t is evaluated under the exception �,
in the frame F . The result of this evaluation is the new
intermediate term t0. The evaluation may modify the cur-
rent memory h, may raise a new exception and finally may
change the current method being evaluated. �0 stands for
the new exception, F 0 stands for the new frame correspond-
ing to the new method and h0 stands for the new memory.
The operational semantics consists of a set of semantic
rules. Each rule states that the evaluation in the conclusion
part can be deduced from the evaluations in the premise
part.
The complete set of the semantic rules is given in the Ap-
pendix. We give in the sequel the explanation of some rel-
evant rules. The remaining rules in the Appendix should
be understood in a similar way.

4.10.1. The return statement

The evaluation of a return statement is very subtle. Ac-
tually, after the execution of a return statement, every en-
closing finally clause must be executed. A predicate Han-
dlerlnTable (cf Section A.3.5 in the Appendix) indicates if

a finally clause exists in the exceptions table of the method
represented by the frame F . By the number associated to
this return statement, we can get the first enclosing finally,
if it exists, in the exceptions table of the method in F (cf Ta-
bles 26 and 27). H. Target represents this finally statement.
The value returned by the evaluation is assigned to the
field ReturnValue of the frame F representing the current
method, the current exception is given up and the execution
continues by handling the Block of the finally clause. This
is specified in the first rule in Table 9.
When there is no enclosing finally clause, the execution
continues in the calling method by returning the value of
the return evaluation. This is specified in the second rule
in Table 9.

4.10.2. Exceptions

Exception handling in Java is a highly designed mechanism
that provides to developers the possibility to deal with ab-
normal situations without causing the execution abortion.
Actually, the developer can control bad results and associate
a specific code to handle such situations. A try statement
in Java is designed for handling exceptions that can oc-
cur through execution. The try clause contains a block of
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Table 11
Static method call evaluation

Table 12
Instance method call evaluation

statements that can raise exceptions. A catch clause can
handle an exception and then the execution continues nor-
mally. A finally clause may appear in the try statement.
This clause is executed whether an exception has occurred
or not. It is considered as a clean code. We present two
rules for the finally evaluation. The rules corresponding to
the try and catch clauses evaluation can be found in the
Appendix).

Table 10 shows two rules for the evaluation of the finally
clause. A finally clause can be evaluated in the context
of an exception �. If this clause does not raise any if
exception and there is no return statement executed yet
(F :ReturnV alue =?) then it re-throws the exception �

at the position of the last statement of finally. The func-
tion finalPosition returns the number of the last statement
of a block of statements. This is specified in the first rule
in Table 10.

Another interesting rule shows how the execution must
return to the caller method after a finally clause. Ac-
tually, if there is a return that has been executed
(F :Returnvalue 6=?) and if there is no enclosing finally
(the predicate HandlerlnTable evaluates to false), the ex-
ecution must return to the caller method (represented by
F :P reviousFrame) after returning the resulting value of
the return evaluation. This is specified in the second rule
in Table 10.

90



A formal dynamic semantics of Java: an essential ingredient of Java security

4.10.3. Method invocation

Java uses the dynamic dispatch to determine which method
is to be executed in each call site when an instance method
is invoked. The search of the actual method is performed at
run time. Actually, the JVM launches a search procedure
to determine the method to be executed. On the other
hand, if the invoked method is static or private there is
no need to launch this search the actual method would be
statically determined. The semantic rules corresponding to
the method invocation represent this process as a first step
of the evaluation.
After determining the method to be invoked, we proceed
to the evaluation of the actual parameters. Let M be
the invoked method and C the class where it is declared.
If static belongs to the modifiers set of M , the evalua-
tion of the invocation must trigger the initialization of the
class C if it is not initialized yet. This is checked using
the predicate initialized. If C is not initialized we call its
clinit() method before evaluating the code of M . The code
of M is evaluated under the substitution of the formal pa-
rameter by the value of the argument. A new frame is
created and used along the evaluation of the method code.
The semantic rules of evaluating a static method as well
as an instance method are shown in Tables 11 and 12. If
the method is an instance many operations are performed
before executing its code. Let M be the instance method,
C the class where it is declared as determined at com-
pile time and D its descriptor. The first evaluation step,
is the search of the actual method. For this, a predicate
InMethod checks the existence of a method M having a de-
scriptor D in the class C. The second evaluation step con-
sists in searching for the actual method to be executed at
this site. This depends on the type of the receiving ob-
ject. The semantic function LookupFirstSuperClass per-
forms this search. Notice that we consider methods with
one parameter if any. We made this restriction only to seek
more clarity of the rules. The generalization to more than
one parameter could be easily performed. For more details
cf Section A.3.13 in the Appendix.

5. Conclusion and future work

We discussed in this paper a dynamic semantics of a large
subset of Java in which we have handled some subtle prob-
lems such as initialization, modifiers, and exceptions. The
formalization has been carried out in an operational small
step style. This makes it extendable to handle another as-
pects of the language such as the threads. On the other
hand, this style is easily understood and manipulated with-
out any heavy theoretical background. The whole seman-
tics is detailed in the Appendix. We plan to extend this se-
mantics to include packages, inner-classes and threads and
ultimately to prove the consistency between this semantics
and the static one described in [8].
On the other hand, this paper gives some insights into the
task consisting in elaborating a Java dynamic semantics.

We can sum up our conclusions as follows. Elaborating
a dynamic semantics for Java should treat all features of the
language not just a reduced subset of it. Hence, a staged
semantics strategy would be inadequate. Any research ef-
fort that address the whole language or at least a realistic
subset of it would be a worthwhile. We hope that SUN
Microsystems simplifies some constructs semantics such as
the exceptions.
This work contributes to build a formal foundations for
our techniques and tools designed to address verification of
Java applications properties related to security issues.
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Appendix
A full overview of the Java

dynamic semantics
We present here a complete overview of the dynamic op-
erational semantics that we have elaborated.

A.1. Grammar of the subset

The syntax of the Java subset that we have considered is
given in Tables 13, 14, 15 and 16 (Tables 13–48, see this
issue, pp. 97–119). This syntax has been defined in [8].

A.2. Hypothesis

The following hypothesis are assumed in our work. We
present them together with the rationale underlying their
assumption:

� Our semantics is able to evaluate syntactically cor-
rect programs. Furthermore, we assume that all the
needed classes have been loaded and checked. We
also assume that the reference resolution step has
been performed correctly. These assumptions are es-
sential. Actually, we do not formalize the dynamic
linking process.

� We assume that the Java program is preprocessed so
that each statement is identified by a number and each
expression is tagged with some relevant annotations.
These annotations are described in the sequel. These
annotations correspond actually to what the compiler
generates.

� For the sake of clarity, we assume that all the methods
have only one argument. We also consider that all
arrays are mono-dimensional. The generalization is
obvious in both cases, but would unnecessarily make
cumbersome the presentation.

� We consider that two methods have been added in
each class, namely init() and clinit(). These methods
have been added in order to express the initialization
process as it is performed by the JVM.

– init (Argument): this method represents the con-
structor code of the class and the initializers of
the instance variables. Argument is the param-
eter of the constructor. It can be void.

– clinit(): this method contains the class static
code and the initializers of the static variables.

It is clear that these two methods represent what ac-
tually is generated by the compiler.

A.3. Semantics rules

The evaluation process is formalized as a transformation
of a configuration to a new one. We denote this transfor-
mation by � ` (�;F ; h; t) ! (�0;F 0; h0; t0) which means
that an intermediate term t is evaluated under the excep-
tion �, in the frame F . The result of this evaluation is the
new intermediate term t0. The evaluation may modify the
current memory h, may raise a new exception and finally
may change the current method being evaluated. �0 stands
for the new current exception, F 0 stands for the new frame
corresponding to the new method and h0 stands for the new
memory.
The operational semantics consists of a set of semantic
rules. Each rule states that the evaluation in the conclusion
part can be deduced from the evaluations in the premise
part.

A.3.1. Field declaration evaluation

The following remarks help the understanding of the field
declaration evaluation rules.

� A FieldDeclaration expression is considered as a part
of clinit() declaration or init() one depending on the
modifiers of this field. If the field is static then its
declaration will be included in the clinit() method
otherwise it will be in the init() method.

� We represent each static field in the memory by
a FieldRecord that contains the field itself (FieldInfo)
and the class in which it is declared (ClassFrom).

� Each declaration of a static field adds to the memory
the FieldRecord with its default value or the value
resulting from the evaluation of the expression that
initializes it.
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� An instance field declaration is included in the init()
method and will be executed when a new object is
created.

� A field is considered as an instance field when
static =2 modifiers of this field.

� A FieldRecord is added to an object having this as
its address.

� The concrete type of an object having ρ as
an address is obtained by applying the function
ConcreteType(ρ).

The methods clinit() and init() are defined in Tables 17
and 18.
In the field declaration evaluation rules, InField stands for
a predicate which evaluates to true when the field repre-
sented by the first argument belongs to the class represented
by the third argument and false otherwise. The second ar-
gument of the predicate InField stands for the simple name
of the field. The fourth argument represents the type of the
field.

InField : FieldInfo � Identifier � ClassFile �
� FieldDescriptor ! bool

InField ( f , Identifier, C, D) =
( f 2C:Fields) ^
( f :SimpleName=Identifier) ^
( f :Descriptor= D):

The rules of field declaration evaluation are presented in
Tables 19 and 20.

A.3.2. Constructor evaluation

A constructor invocation (Table 21) is equivalent to the in-
vocation of the method init() of the class that represents the
concrete type of the newly created object. For example, an
explicit constructor invocation like this (Argument) is anno-
tated with its descriptor D as follows [D] this (Argument)
is evaluated to this.[C; Djinit(υ) where C is the concrete
type of this and υ is the value of Argument.

A.3.3. Local variable declaration expression evaluation

A LocalVarDeclaration expression (Table 22) adds a new
variable to the local environment of the current method.
An initialization of a local variable updates its value in the
local variable table of the current method.

A.3.4. Statement evaluation

Statement evaluation:

� The statement if-then: first the condition of the if
clause is evaluated. When its value is true, the then
clause is executed otherwise the configuration is not
modified.

� The statement if-then-else: first the condition is eval-
uated to produce υ as a value. If υ is true then the
clause then is evaluated, otherwise the clause else is
evaluated.

� The statement while: we evaluate first the condition,
when its value is false the configuration does not
change, otherwise the evaluation of this statement
produces a statement if having the body of the while
statement as its then clause.

The evaluations of the previous statements are presented in
Tables 23 and 24.
The evaluation of the return statement is presented in Ta-
ble 25.

A.3.5. Exception handling

We suppose that a preprocessing of each method is per-
formed in order to associate numbers with statements.
These numbers respect the textual order. The exceptions
table indicates where the control has to flow (continuation)
after each potential exception occurrence in a try-catch con-
struct. For example, the exceptions Table 27 is associated
with the piece of code in Table 26. The column Target
represents the statement block of a catch that can handle
an exception in the clause try which is thrown between
statement 1 and statement i. The block of the finally
clause is executed if the exception is thrown between state-
ment 1 and n whether a catch has been executed or not,
where n represents the number of the last statement in the
last catch.
A throw statement raises an exception from the position
where it appears. First Argument, the argument of the throw,
is evaluated. It produces a reference value υ . If υ is null
then a NullPointerException is raised at the same posi-
tion as the throw statement. Otherwise, we must search
a handler for the thrown exception E. This is formalized
by the predicate HandlerlnTable(E;H;F :Method:Excep-
tionTable;P) which evaluates to true if the first enclosing
catch or the first enclosing finally exists in the exceptions
table given as its third argument. This exceptions table is
associated with the current frame F . The predicate evalu-
ates to false otherwise.
A try statement can have one of the following three forms:
try-catch or try-finally or try-catch-finally.
A try clause is a guarded section where each abnormal
execution will cause a jump to a catch which argument
type is a supertype of the raised exception type.
A finally clause is known as a clean code that will be ex-
ecuted whether a previous exception has occurred or not.
When a finally clause exists in a try statement, the pro-
gram must execute this clause whether an exception oc-
curred or not in the associated try and/or catch clauses of
the same statement. Accordingly, we should formally state
such a semantic constraint. In the exception table, we spec-
ify the column ExceptionType which contains the type of
the thrown exception. We introduce the type Any represent-
ing every non-primitive type that can exist. Hence, if an
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exception is thrown, it will verify the constraint of subtyp-
ing with Any. The example of Table 26 shows a try state-
ment with a finally clause: When an exception is thrown
at some position P , the program execution continues at
the first Target in the table that corresponds to a type in
the column Type, which is a supertype of this exception.
We define the predicate HandlerlnTable that checks the ex-
istence of the first catch or finally in the exceptions table of
the method represented by the frame F i.e. the first range
(From-To) that contains the position P where an exception
E has occurred and having an exception type in the third
column as a superclass of E (this relation is defined under
the environment Γ). It returns the Block contained in the
Target column. This Block represents the continuation of
the execution after the occurrence of the exception. The
predicate HandlerlnTable is defined as follows:

HandlerlnTable : ExceptionType � ExceptionTable �
� ExceptionHandler � Position ! bool

HandlerlnTable(E;F :Method:ExceptionTable;H;P)=
(F :Method:ExceptionTable= []) false) _
((H = hd(F :Method:ExceptionTable))^
(P � H:From) ^
(P � H:To) ^
((H:Type= Any)_ ((Ev H:Type)^ (E 6= Any))))_
((HandlerlnTable(E; tl(F:Method:ExceptionTable);
H;P))^
(P < hd(F :Method:ExceptionTable):From)_
(P > hd(F :Method:ExceptionTable):To)_
((hd(F :Method:ExceptionTable):Type) 6= Any) ^
((E 6v (hd(F :Method:ExceptionTable):Type))_
(E = Any)))

Let us explain now some rules from Tables 28, 29 and 30:

� A try clause can be executed without raising any ex-
ception. If there is an enclosing finally statement in
the exceptions table, the execution will continue at
the Block of this finally, otherwise it will continue
normally. If this clause raises an exception, it will be
equivalent to a throw statement at the position where
the exception occurred.

� A catch clause is executed when it handles a thrown
exception that has happened before (and not from
another catch clauses in the same statement). So, no
exception will be present in the configurations before
executing this clause. The enclosing finally clause
is then determined and the execution continues at
the Block of this finally if it is found. When this
catch clause raises an exception it will be equivalent
to a throw statement at the position of the statement
that has caused it.

� The finally clause is more complicated to formalize.
In fact, there are two factors that influence the evalu-
ation: first, a return statement (if it has been executed
before this finally or inside it) and second, if there
is an exception before executing it or caused by this

clause itself. When the evaluation of this clause ter-
minates normally and there is no return statement that
has been executed (F :ReturnValue=? where F is
the current frame) and no other enclosing finally (the
predicate Handlerlntable evaluates to false), the exe-
cution continues normally. When a return has been
executed before this finally and there is no thrown
exception in the left configuration, we must go to the
first enclosing finally if it exists. Otherwise the exe-
cution returns to the calling method. The execution
of finally can itself raise an exception and it will be
equivalent in this case to a throw. When a finally
clause is executed under some exception and raises
by itself another exception, it gives up the former and
raises this new exception. If it does not cause another
exception it removes the initial exception.

A.3.6. New array creation expression evaluation

An array creation expression returns a new reference to the
created array. Each element of the array is initialized by its
default value. A NegativeSizeException is raised when the
array size is negative. The Table 31 shows the semantics
of such an expression.

A.3.7. Literal, this and parenthesized expression
evaluation

A literal is evaluated to its primitive value this is evaluated
to the field this of the current frame. Evaluation of a paren-
thesized expression returns the value of the expression that
is inside the parentheses. All these rules are formally stated
in the Table 32.

A.3.8. New class instance creation expression evaluation

The Table 33 states how to evaluate a new instance class
creation which triggers a call of the method init() and the
initialization of this class (call of clinit() if it is not yet
initialized). To obtain all the fields of some class C, we
use the function Fields(C).

Fields : ClassFile! (FieldRecord)set

Fields (C) =
8 F 2C:Fields:

if static =2 F:Modi f iers
then fhF;Cig
[
(if (C:ThisClass6= Object)
then Fields(C:SuperClass))

A.3.9. Cast expression evaluation ((type) Expression)

At run time, the JVM checks if the concrete type of
the value υ of Expression evaluation (obtained by calling
ConcreteType(υ)) is a subclass of type. If this constraint
is not satisfied then the exception ClassCastException is
thrown from the position of the nearest statement where
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it exists. If no exception is thrown after the evaluation of
such an expression, the value of the expression is returned
as a result. This is presented in Table 34.

A.3.10. Field access expression evaluation

We evaluate the FieldAccess expression that appear in the
righthand side of an assignment expression. So, each ex-
pression will return a value. The static fields that are not
initialized with constant expressions, at compile time, can
trigger the initialization of the class in which they are de-
clared. In this case, before returning the value of the field,
the method clinit() is called to initialize this class.
The rules of the field access expression evaluation are pre-
sented in the Tables 35, 36, 37 and 38.

A.3.11. Array field access evaluation

An access to an array component of the form Prima-
ryNoNewArray[Expression] can cause the NullPointerEx-
ception if the reference to the array (value of Prima-
ryNoNewArray) is null. When the reference to this array is
not null, the value of Expression must be a positive integer
between 0 and the length of the array. Otherwise, an excep-
tion of type IndexOutOfBoundsException will be thrown.
The rules of evaluating such an expression are given in the
Table 39.

A.3.12. Simple local variable access evaluation

An access to a local variable returns its value from the local
variable table of the current frame. The rule is presented
in Table 40.

A.3.13. Method call evaluation

For a method invocation, there are many steps that are
needed before to jump to the invoked method. First, the
value of the receiver is computed. Then the argument
is evaluated after which the accessibility to the invoked
method is checked (we suppose that the method is accessi-
ble). Afterwards, the underlying method code is localized.
Finally, a new frame is created to contain the information
that is associated with the invoked method.

A.3.14. Computing receiver value

The invocation mode decides what value to give to the
receiver. Actually, for a static mode (static 2 modifiers of
the invoked method) the receiver value is ? (no receiver)
otherwise, it will have some reference value that is the value
of this.

A.3.15. Argument evaluation

An argument list is evaluated from the left to the right.
In our case, we show how to evaluate just one argument.

The same schema could be applied to the case of many
arguments.

A.3.16. Method code localization

The localization of the invoked method depends on the
invocation mode:

� If the invocation mode is static then we know that the
invoked method is from the class C (the ClassFrom
of the method annotation). In this case, the class C
can be initialized if it is not already.

� If the invocation mode is private the invoked method
is also known but no initialization is triggered.

� Otherwise, a dynamic process is required to retrieve
the real method to call. This is achieved in the
semantic rules of the method invocation evaluation
thanks to the function LookupFirstSuperClass.

We need some functions that allow us to gather the infor-
mation that is relevant to the invoked method:

� InMethod: a predicate that evaluates to trueif some
method exists in some class:

InMethod:
MethodInfo � Identifier � ClassFile �
� MethodDescriptor ! bool

InMethod:
(M, Identifier, C;D) =
(M 2C:Methods) ^
(M:SimpleName= Identifier)^
(M:Descriptor= D).

� GetlnvocMode(M;B): a function that returns the in-
vocation mode of a method invocation expression us-
ing the modifier information that is in M. The value
of the parameter B is true when the method invoca-
tion is super.

GetlnvocMode : MethodInfo � bool ! String

GetlnvocMode(M;B) =

if (static 2 M.Modifiers)
then ’static’
else if (private 2 M.Modifiers)

then ’nonvirtual’
else if (B)

then ’super’
else if (abstract 2 M.Modifiers)

then ’interface’
else ’virtual’

� LookupFirstSuperClass(ρ ;M;S; I): represents the
dynamic process to search in the class hierarchy (ex-
plored by Γ) a method M0 having the same name and
descriptor as M with respect to the invocation mode
I . This search is recursive through the class hierarchy
and begins from the class S.
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LookupFirstSuperClass:
address � MethodInfo � ClassFile �
� String ! (MethodInfo, ClassFile)

LookupFirstSuperClass(ρ ;M;S; InvocMode) =
if (Match(M;M0;S))
then if ((InvocMode=’super’) _

(InvocMode=’interface’))
then (M0;S)
else if (InvocMode=’virtual’ ^

overrides((M, con-
creteType(h(ρ))), (M0;S)))
then (M, concreteType(h(ρ)))

else if (S:ThisClass6= Object)
then LookupFirstSuperClass(ρ ;M;
S:SuperClass; InvocMode)

else (?;?)

� The function overrides verifies if some method over-
rides another one through the class hierarchy.

overrides : (MethodIn f o;ClassFile)�
�(MethodIn f o;ClassFile)!bool
overrides((m;C), (m0;C0) =
(CvC0) ^
(((private =2m0:Modi f iers)^ (CvC0))_
(9(m00;C00^m00 6= m00^m00 6= m0)^
(overrides ((m;C), (m00;C00))^
overrides ((m00;C00), (m0;C0))))) ^
(m:SimpleName= m0:SimpleNamê
m:Descriptor= m0:Descriptor)

The underlying rules are presented in Tables 41, 42, 43
and 44.

A.3.17. Assignment expression evaluation

An assignment expression is made of a left-hand side,
a right-hand side and the operator =. The left-hand side
must return a variable, the right-hand side must return
a value. We show in the rules of an assignment expres-
sion how a field access expression must return a variable.
The evaluation result of such an expression is an update
of the value of the class or the instance variable with the
value of the expression in the righthand side.
Another possible expression in the left hand side is an ac-
cess to an array component. A runtime check is made be-
tween to guarantee the type compliance between the type of
the righthand side expression and the type of the left hand
expression. If the former is not a subtype of the latter, the
arrayStoreException will be thrown at the position of the
statement containing this expression. If the left hand side
is a FieldAccess expression then it returns the variable rep-
resenting a static or an instance field. An access to a static
field can trigger the initialization of the class in which it
is declared (if it is not already). The value of the field is
updated with the value of the righthand side expression.
When the left hand side is an ArrayAccess expression, we
use a function GetMappeFields(h(ρ)) to return the map MI
of an array having ρ as address. The rules of the assign-
ment expression evaluation are presented in Tables 45, 46,
47 and 48.
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Table 13
Grammar of the subset – Part 1
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Table 14

Grammar of the subset – Part 2
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Table 15

Grammar of the subset – Part 3
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Table 16
Grammar of the subset – Part 4

Table 17
Method clinit
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Table 18
Method init

Table 19
Instance variables evaluation
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Table 20
Static variables evaluation

Table 21
Constructor evaluation
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Table 22
Local variable declaration evaluation

Table 23
Statement evaluation – Part 1
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Table 24
Statement evaluation – Part 2

Table 25
Return statement evaluation

Table 26
Exception constructs

Table 27
Exceptions table
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Table 28

Exception handling – Part 1
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Table 29

Exception handling – Part 2
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Table 30
Exception handling – Part 3

Table 31
New array expression evaluation

107



Mourad Debbabi, Nadia Tawbi, and Hamdi Yahyaoui

Table 32
Literal, this and parenthesized expression evaluation

Table 33
New instance class creation evaluation

Table 34
Cast expression evaluation
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Table 35

Field access expression evaluation – Part 1
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Table 36

Field access expression evaluation – Part 2
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Table 37

Field access expression evaluation – Part 3
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Table 38
Field access expression evaluation – Part 4

Table 39
Array field access evaluation

Table 40
Simple local variable access
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Table 41
Method call evaluation – Part 1
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Table 42
Method call evaluation – Part 2
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Table 43
Method call evaluation – Part 3
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Table 44
Method call evaluation – Part 4
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Table 45
Assignment evaluation – Part 1

Table 46
Assignment evaluation – Part 2
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Table 47
Assignment evaluation – Part 3
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Table 48

Assignment evaluation – Part 4
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