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Abstract— Examples of the application of the confluent hy-

pergeometric functions in miscellaneous areas of the theoret-

ical physics are presented. It is suggested these functions to

be utilized as a universal means for solution of a large num-

ber of problems, leading to: cylindrical, incomplete gamma,

Coulomb wave, Airy, Kelvin, Bateman, Weber’s parabolic

cylinder, logarithmic-integral and exponential integral func-

tions, generalized Laguerre, Poisson-Charlier and Hermit

polynomials, integral sine and cosine, Fresnel and probability

integrals, etc. (whose complete list is given), which are their

special cases. The employment of such an approach would

permit to develop general methods for integration of these

tasks, to generalize results of different directions of physics

and to find the common features of various phenomena, gov-

erned by equations, pertaining to the same family. Emphasis

is placed here on the use of the Kummer function in the field

of microwaves: the cases of normal and slow rotationally sym-

metric TE modes propagation in the azimuthally magnetized

circular ferrite waveguide are considered. Lemmas on the

properties of the argument, real and imaginary parts, and pos-

itive purely imaginary (real) zeros of the function mentioned

in the complex (real) domain, of importance in the solution

of boundary-value problem stated for normal (slow) waves,

are substantiated analytically or numerically. A theorem for

the identity of positive purely imaginary and real zeros of the

complex respectively real Kummer function for certain pa-

rameters, is proved numerically. Tables and graphs support

the results established. The terms for wave transmission are

obtained as four bilaterally open intervals of variation of the

quantities, specifying the fields. It turns out that the normal

(slow) modes may exist in one (two) region(s). The theoreti-

cally predicted phase curves for the first waves of the two TE

sets examined show that the structure explored is suitable for

ferrite control components design.

Keywords— microwave propagation in anisotropic media, mi-

crowave guides and components, ferrite phase shifters, switches

and isolators, eigenvalue problems, function-theoretic and com-

putational methods in electromagnetic theory, theoretical and

numerical analysis of special functions.

1. Introduction

The Kummer confluent hypergeometric function (CHF) be-
longs to an important class of special functions of the
mathematical physics [1–19] with a large number of ap-
plications in different branches of the quantum (wave) me-

chanics [2, 5–7, 9, 10, 12, 17, 20, 21], atomic physics [2, 5,
22, 23], quantum theory [23], nuclear physics [23],
quantum electronics [24, 25], elasticity theory [2, 5, 7,
9, 26], acoustics [5, 10, 27, 28], theory of oscillating
strings [2, 5, 29], hydrodynamics [5, 10, 30], random walk
theory [2, 7], optics [31], wave theory [2, 7], fiber op-
tics [32–34], electromagnetic field theory [5, 7, 35, 36],
plasma physics [37–39], the theory of probability and
the mathematical statistics [5, 7, 10, 13, 40], the
pure [5, 41–43] and applied mathematics [44]. In the mi-
crowave physics and in particular in the theory of waveg-
uides, such examples are the problems for rotationally
symmetric wave propagation in closed and opened circu-
lar guiding structures, containing: radially inhomogeneous
isotropic dielectric [45–48] or azimuthally magnetized radi-
ally stratified anisotropic media (e.g., ferrite or semiconduc-
tor) [48–74]. The possibility to obtain signal phase shifting
at microwaves makes the geometries of the second type of
filling attractive for the development of nonreciprocal de-
vices for this frequency band and is the reason for their
extensive study [48–88].

In this paper some properties of the complex and real Kum-
mer CHF and its positive purely imaginary, respectively
real zeros are investigated, which are employed in the anal-
ysis of normal and slow rotationally symmetric T E modes
in the simplest canonical structure of the aforesaid family
of anisotropic transmission lines: the circular waveguide,
entirely filled with ferrite. Obtained are the propagation
conditions and phase characteristics in both cases, too. It
is found that there is one (there are two) area(s) of normal
(slow) wave transmission, available for both signs (only for
the negative sign) of magnetization. The potentialities of
the configuration as phaser, switch or isolator are discussed.
Symbols with (without) hats “∧” stand for quantities, rel-
evant to the slow (normal) T E modes, respectively to the
real (complex) Kummer functions.

Besides, the idea is also expressed to replace in the appli-
cations the special cases of the CHFs (that are enumerated)
by the functions themselves (to replace the multitudinous
schemes, utilized at present by a more universal technique)
as much as possible. In this way lots of the common traits
of different processes which usually remain hidden, owing
to the usage of a rather diverse mathematics, would come
into sight.
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2. Confluent hypergeometric functions

2.1. Basic concepts

Confluent hypergeometric are called four functions: the
Kummer and the connected with it Tricomi function
Φ(a, c; x) and Ψ(a, c; x), respectively, and the Whittaker
first, and second ones Mκ,µ(x) and Wκ,µ(x) [10]. The
functions Φ(a, c; x) and Ψ(a, c; x) are solutions of the
confluent hypergeometric equation (CHE), written in the
standard form of Kummer [1–14, 16–19, 44, 54, 55, 57–
59, 61, 69, 72], whereas Mκ,µ(x) and Wκ,µ(x) – of the
same equation, presented in its modified form, suggested
by Whittaker [3, 5, 8, 10, 11, 13, 15–17, 19, 44, 55]. The
quantities a and c (κ and µ) are called parameters and x
– variable [3]. The CHFs except the Kummer one are
multiple-valued for which the zero is a branch point. Their
main branch is taken in the complex x – plane with a cut
along the negative real axis. Both Φ(a, c; x) and Mκ,µ(x)
are regular at zero, whereas Ψ(a, c; x) and Wκ,µ(x) tend
to infinity for x→ 0 [1–19, 55, 57–59, 61, 69, 72]. The
greater symmetry with respect to the parameters observed
in the formulae, involving Whittaker functions [5, 15], as
well as the symmetry in the functions themselves (in their
values) [55], is the reason for discussing them in paral-
lel with the Kummer and Tricomi ones. In our opinion
however, though not symmetrical, the couple Φ(a, c; x) –
Ψ(a, c; x) is to be preferred in the applications in view of
the simpler character of power series, determining them. In
addition to above definition, due to L. J. Slater [10], worth
mentioning also is the one, given by Tricomi who ascer-
tains that CHF is called any solution of CHE, considered
in whichever of its forms [3]. Accordingly, such are for ex-
ample the Φ∗(a, c; x), Mκ,µ(x) and Nκ,µ(x) functions, too,
introduced by Tricomi [2, 3, 7, 9, 61], Buchholz [5] and
Erdélyi [10], respectively. Beside the notations, accepted
here following F. G. Tricomi [2–4, 7, 9] and our previ-
ous works [54, 55, 57–61, 63, 64, 66–74], the symbols

M(a, b, x), 1F1[a; b; x],
∞
u(a, b, x), and F(α, β , x) are em-

ployed also in literature instead of Φ(a, c; x), the symbols

U(a, b, x),
∞
v(a, b, x) and G(a, b, x) – instead of Ψ(a, c; x),

and the ones
√

2x/π m(2ρ)
κ (x) and

√
2x/π w(2ρ)

κ (x) – in-
stead of Mκ,µ(x) and Wκ,µ(x), respectively [1, 5, 10,
12, 13]. The term “confluent” in the name of the functions
is used, since the Kummer one might be deduced from
the Gauss hypergeometric function 2F1(a, b; c; x) through
a limiting process, leading to a confluence of two of its
three regular singularities (1 and ∞) into an irregular one
(the point ∞) [3, 5, 10]. (The regular singularity 0 remains
unchanged.) The word “hypergeometric” is applied, as the
expressions for the functions can be obtained by adding fac-
tors to the terms of the infinite geometric progression [10].

2.2. Special cases

A lot of special functions can be regarded as special cases
of CHFs, or combinations of them:

– the ordinary and modified cylindrical and spherical
Bessel functions: Jv(x), Iv(x),

√
π/(2x)Jn+1/2(x) or√

π/(2x)J−n−1/2(x) and
√

π/(2x)In+1/2(x), respec-
tively [1–3, 7, 9, 10, 12, 13, 15, 16];

– the Hankel functions H(1)
v (x) and H(2)

v (x) [1, 2, 7,
12, 13, 16];

– the Neumann function Nv(x) [3, 7];

– the cylindrical and spherical McDonald functions
Kv(x) and

√
π/(2x)Kn+1/2(x) [7, 13, 15, 16];

– the Coulomb wave functions: the two pairs PL(a, x)
and QL(a, x), and UL(a, x) and VL(a, x), considered
by Curtis [17], the couples GL(σ) and HL(σ), de-
fined by Hartree [17], and U(α, γ, Z) and V (α, γ, Z),
introduced by Jeffreys and Jeffreys [17] and the most
preferable in the applications standard pair FL(η , ρ)
and GL(η , ρ), discussed by Abramowitz and Stegun
[5, 10, 13, 17];

– the function H(m,n,x), named Coulomb wave func-
tion and function of the paraboloid of revolution by
Tricomi [2, 7, 9] or confluent hypergeometric func-
tion by Miller [13];

– the Laguerre functions L(µ)
v (x) and U (µ)

v (x) [3, 5,
10, 16], denoted also as Sµ

v (x) and V µ
v (x) by Miri-

manov [5, 10, 35];

– the Airy functions Ai(x) [13, 16, 44] and Bi(x)
[13, 16];

– the incomplete γ(a, x), the complementary Γ(a, x),
the modified γ∗(a, x) and the fourth incomplete
γ1(a, x) gamma functions [1–3, 7, 9, 10, 13, 15,
16, 44], as well as the derivative of them g(a,x),
g1(a,x), G(a,x) and k(a,x) ones, treated by Tricomi
[2, 7, 9];

– the Kelvin (Thomson) functions bein(x), bern(x),
kein(x), kern(x) [13, 16], hein(x) and hern(x) [3, 11],
met also like beinx, bernx, etc. [13];

– the Bateman function kv(x) [3, 5, 7, 10, 13, 16];

– the Weber’s parabolic cylinder functions Dv(x) in the
Whittaker’s notation [2, 3, 5, 7, 9, 10, 13, 15, 16, 44],
E(0)

v (x) and E(1)
v (x) in the Buchholz’s one [5, 7,

10, 13, 16], D+
v (x) and D−v (x), proposed by Tri-

comi [7], U(a,x), V (a,x) and W (a,x) in the Miller
form [13], or δ (ξ , v) and ρ(ξ , v) in the symbols by
Magnus [5, 10] and ϕn(x) and Ψn(x), suggested by
Janke, Emde and Lösch [11];

– the Cunningham function ωm,n(x) [5, 10, 13], known
as Pearson-Cunningham function, too [15];

– the Heatly Toronto function T (m, n, r) [3, 5, 10,
13, 16];

– the Meixner’s functions F1(α, β , x) [3, 5, 10, 16] and
F2(α,β ,x) [10];
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– the MacRobert’s function E(α, β :: x) [3, 5, 16];

– the Erdélyi function 2F0(α,β ;x) [3, 10, 16];

– the Poiseuille functions pe(r, w) and qe(r, w) [10];

– the Krupp functions 1R(v, l; x) and 2R(v, l; x) [5, 10];

– the Schlömilch function S(v, x) [5, 15];

– the Chappell function C(x, k) [5, 10];

– the logarithmic-integral function li(x) or lix [1, 3, 7,
9, 10, 12, 13, 15, 16];

– the exponential integral functions Eix or Ei(x) and
E1(x) [3, 7, 9, 10, 13, 16], the generalized exponen-
tial integral function En(x) [13, 16], marked also as
En(x) [16] and the modified exponential integral one
Ein(x), used by Tricomi [2, 7, 13];

– the error er f x or Er f (x) and Er f i(x), and comple-
mentary error er f cx or Er f c(x) functions (the error
and probability integrals) [2, 3, 7, 9, 10, 13, 15, 44],
as well as the ones Φ(x) and F(x) [1, 5, 11–13],
φ(x) and L(x) [10], Θ(x), H(x) and α(x) [3, 11],
connected with them, the multiple probability inte-
gral in er f cx [13] and the Hh – probability function
Hhn(x) [13];

– the normal (Gauss) P(x) and Z(x) [13], and the
χ2-distribution P(χ2|v) and Q(χ2|v) functions [40],
and the F-distribution P(F |v1,v2) one [13];

– the Lagrange-Abel function φm(x) [15];

– some elementary (exponential ex, power xn, circular
sinx and hyperbolic shx) functions [1, 3, 7, 13, 16];

– the reduced to n+1th degree exponential series en(x)
[7, 9];

– the Laguerre and generalized Laguerre polynomials

Ln(x) and L(α)
n (x) [1–3, 7, 9, 10, 12, 13, 16, 44];

– the Sonine polynomials T (n)
µ (x) [5, 15];

– the Poisson-Charlier polynomials ρn(v, x) [10, 13]
or pn(x) in the Tricomi’s notation [3];

– the Hermit and modified Hermit polynomials Hen(x)
and Hn(x) [1–3, 7, 10, 12, 13, 16, 44];

– some polynomials (in general incomplete) in 1/x of
nth degree [7];

– the integral sine Si(x) and cosine Ci(x) [1–3, 5, 10,
12, 13, 15, 16]; and the modified cosine Cin(x), em-
ployed by Tricomi [2, 7, 13];

– the Fresnel integrals C(x) and S(x) [3, 7, 10, 12,
13, 16], the related to them C∗(x) and S∗(x), and the
generalized Fresnel ones C(α, x) and S(α, x) [2, 7].

2.3. Examples of application

The CHFs play an exceptional role in many branches of
physics and mathematics. Several examples of their appli-
cations are:

– the solution of Schrödinger equation for charged par-
ticle motion (e.g., electron motion) in Coulombian
field in the quantum mechanics, atomic physics and
quantum theory [2, 5–7, 9, 10, 12, 17, 20–23];

– the energy spectrum specification of the isotropic
(spherically symmetric) harmonic oscillator in nu-
clear physics and other related areas [5, 12, 23];

– the quantum mechanical treatment of the operation
of the masers and lasers [24, 25];

– the elasticity problem for the flexion of circular or an-
nular plates of lenticular form (resembling to a con-
cave or convex lens), resting on, or rabbeted along
its contour, subjected to a normal load whose value
at certain point depends on its radial elongation from
the center of the plate [2, 5, 7, 9, 26];

– the theory of the reflection of sound waves by
a paraboloid [5, 10, 27];

– the consideration of sound waves propagation in
parabolic horn, excited by a point source in its focus,
and in the space between two co-focal paraboloids
of revolution and the construction of the three-
dimensional Green function for the homogeneous
boundary-value problem of the first kind (Dirichlet
problem) and of the second one (Neumann problem)
for the wave equation in both cases [5, 28];

– the inquiry of the natural oscillations of a tight
stretched string whose mass is distributed symmetri-
cally with respect to its middle, following a parabolic
law [5, 29];

– the investigation of a heat generation in a laminary
Poiseuille flow through (in a viscous incompressible
liquid, flowing through) a thin cylindrical capillary
tube of circular cross-section [5, 10, 30];

– the determination of the length of the resultant of
a large number of accidentally directed vectors (a spe-
cial case, connected with the problems of random
walk) [2, 7];

– the task for cylindrical-parabolic mirrors [31];

– the description of sea waves motion against a sheer
coast [2, 7];

– the analysis of guided modes along a cladded opti-
cal fiber of parabolic-index core and homogeneous
cladding [32–34];

– the portrayal of electromagnetic waves transmission
in parabolic pipes [5];

– the study of the reflection of electromagnetic waves
by a parabolic cylinder [2, 5, 7];

– the solution of the diffraction problem for a plane and
a spherical electromagnetic wave in a paraboloid of
revolution of infinite dinemsions [5, 35];
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– the exploration of radiation electromagnetic field in
a hollow paraboloid of revolution, launched by an
axially oriented electric or magnetic dipole, placed
at or before its focus, and between two co-focal
paraboloids [5];

– the electrodynamic characterization of the field in an
excited by a loop cavity resonator, consisting of two
co-focal caps of the form of paraboloids of revolu-
tion [5];

– the finding of the normal (Gauss), the χ2- and the
F-distribution for arbitrary quantities in the theory
of probability and mathematical statistics [13, 40];

– the development of a mathematical model of the elec-
trical oscillations in a free ending wire [5];

– the assessment of the noise voltages transfer over
a linear rectifier [5];

– the explanation of radiation of magnetized dipole in
a stratified medium of spherical symmetry (in a glob-
ular layered atmosphere) [5];

– the case of electromagnetic waves in plasma with
electron density changing linearly along one of the
co-ordinate axes, if an infinitely large constant mag-
netic field is applied along the latter [37];

– the problem for electromagnetic waves in an inhomo-
geneous plasma whose collision frequency is a con-
stant and the electron density varies in one direc-
tion only as a second-degree polynomial of the last-
mentioned (or following a parabolic profile) [38];

– the examination of the radiation field from a uni-
form magnetic ring current around a cylindrical body
of infinite length covered by a plasma sheath in the
presence of a uniform azimuthal static magnetic field
which is of practical application to improve radio
communications during the blackout period in the
re-entry of a conical space vehicle in the earth’s at-
mosphere at hypersonic speed [39];

– the Tricomi euristic approximate evaluation of the
distribution of the positive integers which can be pre-
sented as sums of two kth powers of possible value
in the theory of probability [7];

– the finding of the normal (Gauss) and χ2 – and F –
distribution for arbitrary quantities in the theory of
probability and mathematical statistics [13, 40];

– the series expansion of an arbitrary function in terms
of eigenfunctions, of significance in the theory of
hydrogen atom to describe the point (discrete) and
continuous energy spectrum [5, 41];

– some continued fractions expressions of analytic
functions in the complex plane, employable in the
computational methods [13, 42];

– the realization of irreducible (simple) representations
of a group of third order triangular matrixes, in which

integral operators whose kernels are written through
Whittaker functions, correspond to certain of its ele-
ments [43];

– the inspection of T E0n and T M0n modes, sustained
in radially inhomogeneous circular dielectric wave-
guides (plasma columns or optical fibers) whose per-
mittivity alters in radial direction following certain
profiles [45–48];

– the theory of normal and slow surface T M0n waves
in the azimuthally magnetized millimeter-wave semi-
conductor (solid-plasma) coaxial waveguides, using
n-type InSb and GaAs cooled to 77K as a plasma
material [49, 53, 56, 62, 65];

– the problems for normal and slow T E0n modes in the
azimuthally-magnetized ferrite and ferrite-dielectric
circular and co-axial waveguides and for slow waves,
propagating along cylindrical helices, closely wound
around (or surrounded by) an azimuthally magnetized
ferrite rod (toroid) [49–52, 54, 55, 57–61, 63, 64,
66–74];

– the study of microwave radiation from a magnetic
dipole in an azimuthally magnetized ferrite cylin-
der [89] which may also be explored by means of
the functions considered.

3. The confluent hypergeometric
functions – a universal means

for solution of problems
of mathematical physics

The above analysis shows that: a lot of tasks from different
areas of mathematical physics lead to various representa-
tions of CHFs and a large number of functions are special
cases of the latter and can be expressed in terms of them. In
view of this one might expect to meet the CHFs through-
out the literature. In fact, as Lauwerier wrote, “they are
only sparingly used” [30]. Even one of the problems from
the class examined was categorized as “not a particularly
fortunate one” in the words of Suhl and Walker [49]. An
attempt to substantiate these inferences is the following as-
sertion (standing nowadays in plenty of fields): “The reason
may be that these functions are still too little known, and
are therefore evaded as much as possible.” [30].
Indeed, the CHFs are more complicated than many other
special functions, since they possess two parameters and an
independent variable. The lack of numerical tables, or the
insufficient tabulation of the functional values and their
zeros were a grave obstacle in their applications [30, 49,
75, 80]. Serious computational predicaments arise, if the
parameters and variable get large and especially, provided
they are complex. The relations between these three quanti-
ties also influence the speed of convergence of power series,
determining the functions. Due to this, coming upon them,
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some authors gave only formal analytical results [2, 5, 7,
9, 12, 21, 23, 24, 27, 30, 36–39, 49, 51], whereas others
tried to avoid them through:

– reducing the CHFs to their special cases (if possible)
[5, 10, 12];

– defining new functions which replace them
[75, 79, 80] or harnessing such ones [83, 89];

– elaborating various numerical methods [48, 76, 82,
86, 87].

In our opinion the usage of so many very diverse artificially
devised approaches hampers tracing out the connections
among the different phenomena explored (which obviously
exist, since the latter could be described by the same math-
ematical language), and impedes the establishment of their
common characteristics. It is our conviction that in spite
of the drawbacks pointed out, or the difficulties, appearing
as a result of their complexity, the CHFs have indisputable
advantages: generality and well developed theory together
with valuable properties, such as for example symmetry in
case of Whittaker functions. Therefore, a way out of this
complicated situation, is to find means to overcome the
computational challenges, instead of inventing contrivances
to obviate the CHFs.
In essence the employment of the special cases, debated
in Subsection 2.2, has a similar effect on the process of
investigation of the phenomena and their properties, as
the just discussed one, when the CHFs have been ex-
cluded from the solutions. Utilizing such a great number
of functions entails as well a fragmentation of the analy-
sis methods of corresponding tasks. However, unlike be-
fore, this state of affairs has sprung up in a natural way,
when different problems have been attacked by different
schemes.
As a set-off to that, it is suggested to replace the functions in
question (the special cases) everywhere, where they attend
by the having more universal character CHFs. To this end,
the following statement is formulated:

Statement for universality: The confluent hypergeomet-

ric functions, considered in any of their forms, could be

used as a universal means instead of any of the func-

tions, being their special cases and the related to them,

such as: the cylindrical, incomplete gamma, Coulomb

wave, Weber’s parabolic cylinder functions, etc. (whose

complete list is given above), in the tasks in which they

are met.

Corrolary: Moving from a fragmentation to a generaliza-
tion would permit:

– to solve enormous number of problems by the same
universal mathematical technique;

– to develop general methods for their solution;

– to generalize results of different branches of physics;

– to find common features in different phenomena, gov-
erned by equations from the same family.

An undoubted benefit could be derived even from the partial
realization of the programme proposed (when the compu-
tational hardships are surmountable).

4. Kummer confluent hypergeometric
function

4.1. Definition

The Kummer CHF is defined by the absolutely conver-
gent infinite power series [1–14, 16–19, 54, 55, 57–59,
61, 69, 72]:

Φ(a, c; x) =
∞

∑
0

(a)v

(c)v

xv

v!
. (1)

It is analytic, regular at zero entire single-valued tran-
scendental function of all a, c, x, (real or complex) ex-
cept c = 0,−1,−2,−3, . . . , for which it has simple poles.
Φ(a, c; x) is a notation, introduced by Humbert, (λ )v =
λ (λ +1)(λ +2) . . .(λ +v−1) = Γ(λ +v)/Γ(λ ), (λ )0 = 1,
(1)v = v!, where λ stands for any number (real or complex)
and v for any positive integer or zero, is the Pochhammer’s
symbol and Γ(λ ) is the Euler gamma function. The se-
ries (1) is a solution of the Kummer CHE that is a second
order ordinary differential equation [1–14, 16–19, 54, 55,
57–59, 61, 69, 72]:

x
d2y
dx2 +(c− x)

dy
dx
−ay = 0, (2)

having regular and irregular singularities at 0 and at ∞,
respectively.

4.2. Asymptotic expansion

The asymptotic expansion of Φ(a, c; x) for large values of
variable x = |x|ejϕ , 0 < ϕ < π , is [6, 54, 57–59]:

Φ(a, c; x)≈ Γ(c)
Γ(a)
|x|a−cej(a−c)ϕe|x|e

jϕ
+

Γ(c)
Γ(c−a)

|x|−aeja(π−ϕ). (3)

If x = jz (z = |x| – real, positive), i.e., ϕ = π/2, both
terms in the expression are approximately equally large and
should be taken into account. Provided x is real, positive
(ϕ = 0), the first term in formula (3) is considered only,
since the second one becomes less than the unavoidable
error, inherent to the asymptotic expansions. When x is
real, negative (ϕ = π), the second term is used solely for
the same reason [6, 54, 57–59].
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5. Some properties of the complex
Kummer function

5.1. Properties due to the analytical study

The case a – complex (a = Rea+ jIm a), c = 2Rea – pos-
itive integer, Ima = −k, k – real [a = c/2− jk, k = j(a−
c/2)], x = jz – positive purely imaginary (x = Rex+ jIm x,
Rex = 0, Imx = z, |x| = z, z – real, positive, ϕ = argx =
Imx/Rex, ϕ = π/2), is discussed. Under these assump-
tions an application of the first Kummer theorem [1–3, 5–7,
9–13, 16] facilitates to prove the statement [57–59]:

Lemma 1: If c = 2Rea, Rex = 0 (x = jz – purely imagi-
nary), then

argΦ(a, 2Rea; jz) = z/2, (4)

where argΦ stands for the argument of the Kummer func-
tion.
In addition, a new modulus-argument representation of the
asymptotic expansion (3) is obtained [57, 58]:

Φ(a,2Rea; jz)≈ 2F(cosv)ej(z/2) = 2F |cosv|ej(z/2+nπ), (5)

where F = [Γ(2Rea)/|Γ(a)|]e−(π/2)Imaz−Rea, v = (z/2)+
Ima lnz−argΓ(a)−Rea(π/2) and n = 1, 2, 3. . . denotes
the number of corresponding zero of cosine, argΓ(a) is
the argument of gamma function. An inspection of expres-
sion (5) permits to formulate further to Lemma 1.

Lemma 2: If c = 2Rea, Rex = 0 (x = j z – positive purely
imaginary), the function Φ(a,2Rea; j z) has an infinite

number of simple zeros ζ (c)
k,n in z both for k > 0 and k < 0

(k =−Ima, n = 1, 2, 3 . . .), at which ReΦ = ImΦ = |Φ|= 0
[57, 58, 69].

Lemma 3: If c = 2Rea, Rex = 0 (x = j z – positive purely

imaginary) and z exceeds the nth zero ζ (c)
k,n of Kummer

CHF Φ(a,2Rea; j z) in z (k = −Ima, n = 1, 2, 3. . .) then
its argument

argΦ(a, 2Rea; j z) = (z/2)+nπ (6)

is a linear function of z with finite increase by π at each
consecutive zero of the function [57, 58, 69].

Lemma 4: If c = 2Rea, Rex = 0, (x = j z – positive
purely imaginary), then for the real and imaginary parts
of Kummer CHF it holds ReΦ(a,2Rea; j z) = 0 for z =
(2m + 1)π , whereas ImΦ(a,2Rea; j z) = 0 for z = 2mπ ,
m = 0, 1, 2, 3, . . ., irrespective of the value of Ima, (k)
[57, 58].

Corollary: An infinite decreasing (if Rea > 0) or increas-
ing (if Rea < 0 and Rea 6= t/2, t = 0,−1,−2,−3, . . .)
sequence of maxima of |Φ(a,2Rea; j z)| and a sequence
of its zeros alternate with each other when z grows in
case c = 2Rea, Rex = 0 (x = j z – positive purely imag-
inary) [57].

5.2. Properties due to the numerical study

The statements of Lemmas 1–4 are confirmed by the nu-
merical evaluation of the function Φ(1.5− j k, 3; jz) made,
using series (1). Figure 1 is a plot of the loci curves of Φ
in the complex plane for k = +0.5, 0 and −0.5 (solid,
dotted and dashed lines, respectively), Fig. 2 visualises

Fig. 1. Loci curves of Φ(1.5− j k,3; jz) in the complex plane for
k = +0.5, 0 and −0.5.

Fig. 2. Real and imaginary parts of Kummer function Φ(1.5−
j k,3; jz) against z for k = 0, ±0.5 and ±1.0.

the variation of ReΦ (solid lines) and ImΦ (dashed
lines) versus z for k = 0,±0.5,±1.0 and Fig. 3 gives
the dependence of modulus and argument of Φ on z for
k = +0.5, 0 and −0.5 (solid, dotted and dashed lines, re-
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Table 1
First six positive purely imaginary zeros ζ (3)

k,n of Φ(1.5− j k,3; jz) for k =−1.0 (0.2)+1.0

k ζ (3)
k,1 ζ (3)

k,2 ζ (3)
k,3 ζ (3)

k,4 ζ (3)
k,5 ζ (3)

k,6

−1.0 4.4750 5671 9.5777 9569 15.0744 6601 20.7758 5770 26.6000 3381 32.5053 0790
−0.8 4.9618 8564 10.3259 3914 15.9980 9339 21.8286 7627 27.7540 5190 33.7420 5957
−0.6 5.5218 6556 11.1477 3249 16.9911 7329 22.9469 7930 28.9703 0361 35.0384 2135
−0.4 6.1595 3442 12.0428 8636 18.0516 0729 24.1278 4699 30.2454 3063 36.3907 7149
−0.2 6.8751 0735 13.0069 8966 19.1734 8573 25.3647 3201 31.5725 5798 37.7920 4131

0.0 7.6634 1194 14.0311 7334 20.3469 3627 26.6473 8388 32.9412 6801 39.2317 1702
0.2 8.5142 1018 15.1029 6417 21.5590 7859 27.9628 4223 34.3385 7601 40.6968 5232
0.4 9.4140 5779 16.2082 5362 22.7959 6241 29.2973 5379 35.7509 1422 42.1739 8392
0.6 10.3489 2135 17.3336 0506 24.0447 2652 30.6384 5569 37.1660 9203 43.6511 3385
0.8 11.3063 8822 18.4679 5058 25.2951 0103 31.9763 7998 38.5746 8212 45.1191 1960
1.0 12.2767 8251 19.6032 3531 26.5398 8420 33.3044 4623 39.9703 5445 46.5718 6228

Table 2
First positive purely imaginary zeros ζ (3)

k,1 of Φ(1.5− j k,3; jz) and products |k|ζ (3)
k,1 and |a|ζ (3)

k,1 for large negative k

k ζ (3)
k,1 |k|ζ (3)

k,1 |a| |a|ζ (3)
k,1

−10000 0.00065 93654 06232 6.59365 40623 10 000.00011 25000 6.59365 41365
−20000 0.00032 96827 04784 6.59365 40956 20 000.00005 62500 6.59365 41142
−40000 0.00016 48413 52600 6.59365 41040 40 000.00002 81250 6.59365 41086
−60000 0.00010 98942 35093 6.59365 41055 60 000.00001 87500 6.59365 41076
−80000 0.00008 24206 76327 6.59365 41061 80 000.00001 40625 6.59365 41072
−100000 0.00006 59365 41063 6.59365 41062 100 000.00001 12500 6.59365 41070

Fig. 3. Modulus and argument of Kummer function Φ(1.5−
j k,3; jz) versus z for k = +0.5, 0 and −0.5.

spectively). The distribution of the first ten zeros of Φ
with k is plotted in Fig. 4. The curves intersect the ordi-

Fig. 4. Distribution of the first ten positive purely imaginary
zeros of Kummer CHF Φ(1.5− j k,3; jz) with k.

nate axis (k = 0) at points ζ (3)
0,n = 2v1,n [v1,n is the nth zero

of Bessel function J1(x)] which could be proved, using
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the second Kummer theorem [1–4, 7, 9, 10, 13, 16]. Val-
ues of ζ (c)

k,n for small and large |k| are listed in Tables 1

and 2. The analysis shows that it is true: lim
k→−∞

ζ (c)
k,n = 0

and lim
k→+∞

ζ (c)
k,n = +∞. The products |k|ζ (c)

k,n and |a|ζ (c)
k,n are

of special interest, if k gets very large negative (see Ta-
ble 2). It is valid [72]:

Lemma 5: If ζ (c)
k,n is the nth positive purely imaginary zero

of Kummer function Φ(a, c; x) in x (n = 1, 2, 3. . .) pro-
vided a = c/2− j k – complex, c = 2Rea – restricted pos-
itive integer, x = j z – positive purely imaginary, z – real,
positive, k = j(a− c/2) – real, then the infinite sequences

of positive real numbers {ζ (c)
k,n}, {|k|ζ

(c)
k,n} and {|a|ζ (c)

k,n} are
convergent for k → −∞ (c, n – fixed). The limit of the
first sequence is zero and the limit of the second and third
ones is the same. It equals the finite positive real number L,
where L = L(c, n). It holds:

lim
k→−∞

|k|ζ (c)
k,n = L(c, n) , (7)

lim
k→−∞

|a|ζ (c)
k,n = L(c, n) . (8)

For any |k| and relevant |a| it is true |k|ζ (c)
k,n < L(c, n) <

|a|ζ (c)
k,n . In case k→ +∞, {ζ (c)

k,n}, {|k|ζ
(c)
k,n}, and {|a|ζ (c)

k,n}
also tend to +∞. Results for complex Φ – function can be
found in [55, 57–59, 72], too.

6. Some properties of the real
Kummer function

6.1. Properties due to the analytical study

by F. G. Tricomi

Tricomi has proved that if â, ĉ, x̂ are real, x̂ > 0 and ĉ > 0:

– the Kummer CHF Φ(â, ĉ, x̂) has real positive zeros
only if â < 0;

– the number of zeros l̂ = abs[â] is finite, [â] is the
largest integer less or equal to â, i.e., [â]≤ â;

– at the point â = [â] =−n̂ (n̂≤ l̂ – a positive integer,
n̂ = 1, 2, . . . , l̂) a new zero appears [1–3, 7, 9, 10, 44].

6.2. Properties due to the numerical study

The case â = ĉ/2+ k̂ – real, ĉ – positive integer, k̂ – real
(k̂ = â− ĉ/2), x̂ – real, positive, is treated. Computations of
the function Φ(1.5+ k̂, 3; x̂) have been performed, making
use of series (1). Figures 5 and 6 represent Φ versus x̂ for
k̂ > 0 (solid lines), k̂ = 0 (dotted curve) and k̂ < 0 (dashed
lines). The monotonous (oscillating) character of curves
for k̂ >−1.5 (k̂ <−1.5) is in agreement with above analyti-

cal results. Values of the real zeros ζ̂ (ĉ)
k̂, n̂

of the same function

are given in Tables 3–5 for different intervals of variation
of k̂. The distribution of the first eight zeros of Φ against
k̂ is drawn in Fig. 7. The numerical analysis indicates

Fig. 5. Kummer function Φ(1.5+ k̂, 3; x̂) against x̂ for k̂ =
−1.5(0.5)3.

Fig. 6. Kummer function Φ(1.5+ k̂, 3; x̂) versus x̂ for k̂ =
−5(0.5)−1.5.

that it holds: lim
k̂→−∞

ζ̂ (ĉ)
k̂, n̂

= 0 and lim
k̂→−(n̂−1)− ĉ/2
k̂ <−(n̂−1)− ĉ/2

ζ̂ (ĉ)
k̂, n̂

= +∞.

The products |k̂|ζ̂ (ĉ)
k̂, n̂

and |â|ζ̂ (ĉ)
k̂, n̂

are of interest, if k̂ is very

large negative (Table 5). It is true:

Lemma 6: If ζ̂ (ĉ)
k̂, n̂

is the n̂th positive real zero of

Kummer function Φ(â, ĉ; x̂) in x̂ (n̂ = 1, 2, . . . , l̂, l̂ =
abs [â]) provided â, ĉ, x̂ are real, ĉ – restricted posi-
tive integer and k̂ = â− ĉ/2 – real (â = ĉ/2+ k̂), then
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Table 3

First six positive real zeros ζ̂ (3)

k̂, n̂
of Φ(1.5+ k̂, 3; x̂) for k̂ =−

[
(2n̂+1)/2+1.10−ŝ

]
and ŝ = 2(1)10

ŝ ζ̂ (3)

k̂(ŝ),1
ζ̂ (3)

k̂(ŝ),2
ζ̂ (3)

k̂(ŝ),3
ζ̂ (3)

k̂(ŝ),4
ζ̂ (3)

k̂(ŝ),5
ζ̂ (3)

k̂(ŝ),6

10 32.6943 6952 39.2832 5273 45.2869 3680 50.9779 8646 56.4636 0593 61.8003 1150

9 30.1381 7435 36.6025 7840 42.4984 2791 48.0931 9869 53.4911 8502 58.7470 5165

8 27.5553 2227 33.8846 6661 39.6641 8688 45.1555 0085 50.4595 9370 55.6290 4210

7 24.9390 3482 31.1204 5777 36.7733 9084 42.1526 1734 47.3553 1077 52.4316 6489

6 22.2793 6643 28.2967 9449 33.8104 1524 39.0668 9583 44.1589 4739 49.1340 0339

5 19.5607 1308 25.3932 7731 30.7511 9691 35.8712 6945 40.8408 6789 45.7041 6336

4 16.7561 8418 22.3751 7209 27.5550 4993 32.5201 8558 37.3513 6214 42.0887 8082

3 13.8134 2126 19.1750 2405 24.1432 3161 28.9257 1322 33.5946 6329 38.1852 0648

2 10.6181 4852 15.6405 7545 20.3351 4451 24.8844 5526 29.3480 2383 33.7537 3550

Table 4

First six positive real zeros ζ̂ (3)

k̂, n̂
of Φ(1.5+ k̂, 3; x̂) for k̂ =−2(−1)−10

k̂ ζ̂ (3)

k̂,1
ζ̂ (3)

k̂,2
ζ̂ (3)

k̂,3
ζ̂ (3)

k̂,4
ζ̂ (3)

k̂,5
ζ̂ (3)

k̂,6

−2 4.1525 7778

−3 2.3908 7384 7.7342 0261

−4 1.7240 3430 4.9963 8913 11.3550 3906

−5 1.3562 4234 3.8054 2722 7.8425 2881 15.0185 8200

−6 1.1202 9295 3.0969 9425 6.1880 6299 10.8491 1987 18.7168 8187

−7 0.9552 6444 2.6191 1978 5.1554 0981 8.7786 0273 13.9709 0761 22.4429 7395

−8 0.8330 6998 2.2725 0326 4.4346 8551 7.4417 8723 11.5221 5873 17.1799 4235

−9 0.7388 2652 2.0086 2555 3.8982 3676 6.4852 2265 9.9005 3270 14.3837 0603

−10 0.6638 7020 1.8005 8410 3.4814 0975 5.7592 2215 8.7176 8903 12.4948 1718

Table 5

First positive real zeros ζ̂ (3)

k̂,1
of Φ(1.5+ k̂, 3; x̂) and products |k̂|ζ̂ (3)

k̂,1
and |â|ζ̂ (3)

k̂,1
for large negative k̂

k̂ ζ̂ (3)

k̂,1
|k̂|ζ̂ (3)

k̂,1
â |â|ζ̂ (3)

k̂,1

−10000 0.00065 93654 15127 6.59365 41512 −9998.5 6.59266 51031

−20000 0.00032 96827 05895 6.59365 41179 −19998.5 6.59315 95938

−40000 0.00016 48413 52739 6.59365 41095 −39998.5 6.59340 68475

−60000 0.00010 98942 35134 6.59365 41080 −59998.5 6.59348 92666

−80000 0.00008 24206 76343 6.59365 41074 −79998.5 6.59353 04764

−100000 0.00006 59365 41072 6.59365 41072 −99998.5 6.59355 52023

the infinite sequences of positive real numbers
{

ζ̂ (ĉ)
k̂, n̂

}
,

{
|k̂|ζ̂ (ĉ)

k̂, n̂

}
and

{
|â|ζ̂ (ĉ)

k̂, n̂

}
are convergent for k̂ → −∞

(ĉ, n̂ – fixed). The limit of the first sequence is zero and
the limit of the second and third ones is the
same. It equals the finite positive real number L̂, where
L̂ = L̂(ĉ, n̂). It is valid:

lim
k̂→−∞

|k̂|ζ̂ (ĉ)
k̂, n̂

= L̂(ĉ, n̂) , (9)

lim
k̂→−∞

|â|ζ̂ (ĉ)
k̂, n̂

= L̂(ĉ, n̂) . (10)

For any |k̂| and corresponding |â| it holds |â|ζ̂ (ĉ)
k̂, n̂

<

L̂(ĉ, n̂) < |k̂|ζ̂ (ĉ)
k̂, n̂

. If k̂ → +∞,
{

ζ̂ (ĉ)
k̂, n̂

}
,

{
|k̂|ζ̂ (ĉ)

k̂, n̂

}
and

{
|â|ζ̂ (ĉ)

k̂, n̂

}
go to +∞, too.

Lemma 7: Let ζ̂ (ĉ)
k̂, n̂

is the n̂th positive real zero of Kummer

function Φ(â, ĉ; x̂) in x̂ (n̂ = 1, 2, . . . , l̂, l̂ = abs [â]) pro-
vided â, ĉ, x̂ are real, ĉ – restricted positive integer and k̂ =
â− ĉ/2 – real (â = ĉ/2+ k̂). If k̂ =−

[
(2n̂+1)/2+1.10−ŝ

]
,

and ŝ = 1, 2, 3, . . . is a positive integer, then the dif-

120



The Kummer confluent hypergeometric function and some of its applications in the theory of azimuthally magnetized circular ferrite waveguides

Fig. 7. Distribution of the first eight positive real zeros of Kum-
mer function Φ(1.5+ k̂, 3; x̂) with k̂.

ferences ∆̂ŝ+1, ŝ, n̂ = ζ̂ (ĉ)
k̂(ŝ+1), n̂

− ζ̂ (ĉ)
k̂(ŝ), n̂

and ∆̂2
ŝ+2, ŝ+1, ŝ, n̂ =

∆̂ŝ+1, ŝ, n̂− ∆̂ŝ+2, ŝ+1, n̂ where k̂(ŝ + 1) and k̂(ŝ) are any two
neighbouring parameters for certain n̂, tend to a finite real
positive number and zero, respectively, especially if ŝ gets

large and n̂ is small. Accordingly, the zeros ζ̂ (ĉ)
k̂, n̂

, situated

close to the points k̂ =−(2n̂+1)/2 can be computed from
the approximate formula:

ζ̂ (ĉ)
k̂(ŝ+2), n̂

≈ ζ̂ (ĉ)
k̂(ŝ+1), n̂

+ ∆̂ŝ+1, ŝ, n̂ = 2ζ̂ (ĉ)
k̂(ŝ+1), n̂

− ζ̂ (ĉ)
k̂(ŝ), n̂

. (11)

This relation permits to obtain the subsequent zero, if the
values of the preceding two are known (Table 4). Results
for real Φ – function are available also in [10, 11, 13, 14].

7. A theorem for the identity of zeros
of certain Kummer functions

Theorem 1: If ζ (c)
k,n is the nth positive purely imaginary

zero of complex Kummer function Φ(a, c; x) in x (n =
1, 2, 3, . . .) provided a = c/2− jk – complex, c = 2Rea –
restricted positive integer, x = j z – positive purely imag-
inary, z – real, positive, k = j(a− c/2) – real, and if

ζ̂ (ĉ)
k̂, n̂

is the n̂th positive real zero of real Kummer function

Φ(â, ĉ; x̂) in x̂ (n̂ = 1, 2, . . . , l̂, l̂ = abs [â]) provided â, ĉ, x̂
are real, ĉ – restricted positive integer and k̂ = â− ĉ/2 –
real (â = ĉ/2+ k̂), then the infinite sequences of positive

real numbers
{

ζ (c)
k,n

}
,

{
|k|ζ (c)

k,n

}
and

{
|a|ζ (c)

k,n

}
are conver-

gent for k→−∞ (c, n – fixed), and the infinite sequences

of positive real numbers
{

ζ̂ (ĉ)
k̂, n̂

}
,

{
|k̂|ζ̂ (ĉ)

k̂, n̂

}
and

{
|â|ζ̂ (ĉ)

k̂, n̂

}

are convergent for k̂ → −∞ (ĉ, n̂ – fixed). The limits of

{
ζ (c)

k,n

}
and

{
ζ̂ (ĉ)

k̂, n̂

}
equal zero. The limits of

{
|k|ζ (c)

k,n

}
and

{
|a|ζ (c)

k,n

}
coincide. They equal the positive real number L,

where L = L(c, n). The same is fulfilled for the limits of{
|k̂|ζ̂ (ĉ)

k̂, n̂

}
and

{
|â|ζ̂ (ĉ)

k̂, n̂

}
which equal the positive real num-

ber L̂, where L̂ = L̂(ĉ, n̂). On condition that c = ĉ and
n = n̂, it is correct:

L(c, n) = L̂(ĉ, n̂) . (12)

In addition, in case k = k̂ – large negative, it is true:

ζ (c)
k,n ≈ ζ̂ (ĉ)

k̂, n̂
. (13)

It holds ζ (c)
k,n < ζ̂ (ĉ)

k̂, n̂
and |â|ζ̂ (ĉ)

k̂, n̂
< |k|ζ (c)

k,n < L(c, n) <

|a|ζ (c)
k,n < |k̂|ζ̂ (ĉ)

k̂, n̂
for any c = ĉ, n = n̂, |k| = |k̂| and

|a| ≈ |â|, (|â| < |a|). The rate of convergence decreases

as follows
{
|k|ζ (c)

k,n

}
,

{
|a|ζ (c)

k,n

}
,

{
|k̂|ζ̂ (ĉ)

k̂, n̂

}
and

{
|â|ζ̂ (ĉ)

k̂, n̂

}
.

When c << |k| (ĉ << |k̂|), the sequences
{
|â|ζ̂ (ĉ)

k̂, n̂

}
and

{
|a|ζ (c)

k,n

}
converge faster. For c = 3 and n = 1, 2, . . . , 10,

it is valid L(c, n) = L̂(ĉ, n̂) =6.593654107, 17.71249973,
33.75517722, 54.73004731, 80.6387791, 111.48189218,
147.25958974, 187.9719664, 233.61907045, 284.20092871.
Assuming that k→+∞ (k̂→+∞),

{
ζ (c)

k,n

}
,
{
|k|ζ (c)

k,n

}
and

{
|a|ζ (c)

k,n

}
,
({

ζ̂ (ĉ)
k̂, n̂

}
,
{
|k̂|ζ̂ (ĉ)

k̂, n̂

}
and

{
|â|ζ̂ (ĉ)

k̂, n̂

})
tend to +∞.

The proof of Theorem 1 is based on the numerical study
of the zeros of Kummer CHF, respectively on Lemmas 5
and 6 (Tables 2 and 5).

8. Azimuthally magnetized circular
ferrite waveguide

An infinitely long, homogeneous, perfectly conducting cir-
cular waveguide of radius r0, entirely filled with lossless
ferrite, magnetized in azimuthal direction to remanence
by an infinitely thin switching wire, is considered. The
anisotropic load has a scalar permittivity ε = ε0 εr and
a Polder permeability tensor ←→µ = µ0

[
µi j

]
, i, j = 1, 2, 3

of nonzero components µi i = 1 and µ13 = −µ31 = −jα ,
(α = γ Mr/ω, γ – gyromagnetic ratio, Mr – remanent
magnetization, ω – angular frequency of the wave). The
propagation of normal and slow rotationally symmetric
T E modes in the structure is examined. The following
quantities are used in the study of the fields of first type:
β – phase constant of the wave in the guide, β f = β1

√µe f f ,
β1 = β0

√
εr, β0 = ω√ε0µ0 – natural propagation constants

of the unbounded azimuthally magnetized ferrite and di-
electric media of relative permittivity εr and of free space,
respectively, µe f f = 1−α2 – effective relative permeabil-

ity and β2 =
(
β 2

f −β 2
)1/2

– transverse distribution coeffi-

cient. The expressions: β̄ = β/
(
β0
√

εr
)
, β̄ f = β f /

(
β0
√

εr
)
,

β̄2 = β2/
(
β0
√

εr
)

and r̄0 = β0r0
√

εr provide universality
of the results.
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9. A microwave application
of the complex Kummer function

9.1. Propagation problem for normal T E0nT E0nT E0n modes in an

azimuthally magnetized circular ferrite waveguide

The guided T E0n waves in configuration described are

normal, if β̄2 =
(
β̄ 2

f − β̄ 2
)1/2

is real
(
β̄ f =

√µe f f
)
, i.e.,

β̄ < β̄ f ,
(
β̄ > 0, β̄ f > 0

)
. They are governed by the fol-

lowing characteristic equation [54, 55, 57, 59–61, 63, 66,
69, 70, 72–74]:

Φ
(
a, c; x0

)
= 0, (14)

where a = 1.5− jk, c = 3, x0 = jz0, k = αβ̄/
(
2β̄2

)
, z0 =

2β̄2 r̄0. It holds, provided β̄2 = ζ (c)
k,n/

(
2r̄0

)
which defines

the eigenvalue spectrum of the fields examined.

9.2. Phase characteristics

Using the roots ζ (3)
k,1 of Eq. (14) and the relations between

barred quantities, the dependence of β̄ on r̄0 with α as
parameter for the normal T E01 mode in the ferrite waveg-
uide is computed and plotted in Fig. 8. The solid (dashed)
lines, corresponding to positive (negative) magnetization
are of infinite (finite) length. Hence, transmission is pos-
sible for α+ > 0

(
α− < 0

)
in an unlimited from above

(restricted from both sides) frequency band. The com-
mon starting point of the curves for the same |α| at
the horizontal axis depicts the pertinent cutoff frequency

r̄0cr =
[
ζ (3)

0,1/2
]
/
(
1−α2

)1/2
. The ends of characteristics

for Mr < 0 of co-ordinates (r̄0en−, β̄en−) form an en-
velope (dotted line), labelled with En1−, limiting from

Fig. 8. Phase curves β̄ (r̄0) of the normal T E01 mode in the
circular ferrite waveguide.

the right the area of propagation for negative magnetiza-
tion. The curve, marked with α = 0 (the ferrite degener-
ates into isotropic dielectric) is infinitely long (transmis-
sion takes place in an unlimited from above frequency
range). The characteristics for α+ > 0 (α− < 0) are single-
valued (double-valued below cut-off, with an inversion
point of abscissa r̄0i−). The envelope En1− possesses
a minimum minr̄0right− = 2L(3, 1) at α−,min =−1

√
2 and

β̄right−,min = 1/
√

2.

9.3. Propagation conditions

Integrating the results of analysis of complex Kummer
CHFs and of the problem studied, it turns out that the
normal T E0n waves propagate in one region whose bound-
aries for Mr > 0 and Mr < 0 are determined by the
terms: αle f t+,− < α+,− < αright+,−, kle f t+,− < k+,− <

kright+,−, β̄le f t+,− < β̄+,− < β̄right+,−, r̄0le f t+,− < r̄0+,− <
r̄0right+,−, where αle f t− = −1, αright− = 0, αle f t+ = 0,
αright+ = 1, kle f t− = −∞, kright− = 0, kle f t+ = 0, kright+ =

+∞, β̄le f t+,− = 0, β̄right+,− =
(
1− α2

+,−
)1/2

, r̄0le f t+ =
r̄0cr, r̄0right+ = +∞, r̄0le f t− = r̄0i−, r̄0right− = r̄0en− =

L(c, n)/
[
|α−|

(
1−α2

−
)1/2]

. Moreover β̄right = β̄en−. The
subscripts “left”, “right” designate the limits of domain in
which certain quantity varies and the ones “+”, “–” show
the sign of magnetization to which the latter is relevant.

9.4. Phaser operation

The waveguide may provide differential phase shift ∆β̄ =
β̄− − β̄+ for T E01 mode when latching Mr in the area
of partial overlapping ∆ = r̄0right−− r̄0le f t+ = r̄0en−− r̄0cr

of the intervals ∆− =
(
r̄0le f t−, r̄0right−

)
, and ∆+ =(

r̄0le f t+, r̄0right+
)
, pertinent to β̄−(r̄0−) and β̄+(r̄0+) curves

for the same |α| (∆ = ∆− ∩∆+, Fig. 8 and Fig. 1 [74]).
Hence, the condition for the geometry to operate as
phaser at fixed |α| (the working point r̄0 to be part of ∆),
is r̄0cr < r̄0 < r̄0en−, or [69]:

ζ (3)
0,1|α|< 2r̄0|α|

√
1−α2 < 2L(3, 1) . (15)

Save from the graphs, ∆β̄ could be computed also directly
from structure parameters, using the formulae ∆β̄ = A|α|,
∆β̄ = B/r̄0, ∆β̄ = (C/r̄0)|α| [66, 74]. The values of fac-
tors A, B, C are tabulated in [66, 74]. If r̄0 > r̄0en−, the
configuration has potentialities as current controlled switch
or isolator.

10. A microwave application of the real
Kummer function

10.1. Propagation problem for slow T̂ E0n̂T̂ E0n̂T̂ E0n̂ modes in an

azimuthally magnetized circular ferrite waveguide

The guided T̂ E0n̄ waves examined are slow, if ¯̂β2 =( ¯̂β 2− ¯̂β 2
f

)1/2
is real ( ¯̂β 2

f = µ̂e f f , µ̂e f f = 1− α̂2), i.e., pro-
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vided ¯̂β 2 >
¯̂β 2

f , ( ¯̂β > 0, ¯̂β 2
f > 0, ¯̂β 2

f < 0 or ¯̂β 2
f = 0). The so-

lution of Maxwell equations subject to boundary condition
at the wall ¯̂r = ¯̂r0 yields the corresponding characteristic
equation [69]:

Φ
(
â, ĉ; x̂0

)
= 0 (16)

with â = 1.5+ k̂, ĉ = 3, x̂0 = 2 ¯̂β2 ¯̂r0, k̂ = α̂ ¯̂β/
(
2 ¯̂β2

)
. It

is valid in case ¯̂β2 = ζ̂ (ĉ)
k̂, n̂

/
(
2¯̂r0

)
, giving the eigenvalue

spectrum looked for. (Equation (16) could be obtained

from (14) putting k = jk̂ and β̄2 =−j ¯̂β2).

10.2. Propagation conditions

Combining the outcomes of the study of real Kummer
CHFs and of the problem regarded, it is found that the
slow T̂ E0n̂ modes could be guided for M̂r < 0 solely in

two areas, set by the criteria: α̂(1),(2)
le f t− < α̂(1),(2)

− < α̂(1),(2)
right− ,

k̂(1),(2)
le f t− < k̂(1),(2)

− < k̂(1),(2)
right− , ¯̂β (1)

le f t− <
¯̂β (1)
− <

¯̂β (1)
right−,

¯̂β (2)
le f t− >

¯̂β (2)
− >

¯̂β (2)
right−, ¯̂r(1),(2)

le f t− < ¯̂r(1),(2)
0− < ¯̂r(1),(2)

0right−, with

α̂(1)
le f t−=−1, α̂(1)

right−=0, α̂(2)
le f t−=−∞, α̂(2)

right−=−(2n̂+1),

k̂(1)
le f t− = −∞, k̂(1)

right− = −(2n̂ + 1)/2, k̂(2)
le f t− = α̂(2)

− /2,

k̂(2)
right− = −(2n̂ + 1)/2, ¯̂β (1)

le f t− =
[
1 −

(
α̂(1)
−

)2
]1/2

,

¯̂β (1)
right− =

{[
1−

(
α̂(1)
−

)2
]/[

1−
(

α̂(1)
−

/(
2n̂+1

))2]}1/2

,

¯̂β (2)
right− =

{[(
α̂(2)
−

)2−1
]/[(

α̂(2)
−

/(
2n̂+1

))2
−1

]}1/2

,

¯̂β (2)
le f t− = +∞, ¯̂r(1)

0le f t− = L̂
(
ĉ, n̂

)/{∣∣α̂(1)
−

∣∣
[
1−

(
α̂(1)
−

)2
]1/2

}
,

¯̂r(1)
0right− = +∞, ¯̂r(2)

0le f t− = 0, ¯̂r(2)
0right− = +∞. The super-

scripts (1), (2) designate the zone to which the cor-
responding quantity relates. Thus, the symbol T̂ E0n̂ is

a general notation for two waves T̂ E
(1)

0n̂ and T̂ E
(2)

0n̂ ,
supported in the first and second regions, respectively.

10.3. Phase characteristics

Taking into account the propagation conditions and re-
peating the procedure, described in Subsection 9.2 with

the roots ζ̂ (3)

k̂,1
of Eq. (16), the ¯̂β (1)

−
(
¯̂r(1)
0−

)
and ¯̂β (2)

−
(
¯̂r(2)
0−

)
–

characteristics with α̂(1)
− and α̂(2)

− as parameters for the

slow T̂ E
(1)

01 and T̂ E
(2)

01 modes, respectively in the struc-
ture are computed and presented with dashed curves of
infinite length in Figs. 9 and 10, respectively. Thus, trans-
mission takes place for α̂− < 0 in two unlimited from
above frequency bands. An envelope (dotted line), la-
belled with Ên1− (for the co-ordinates of the points of

which ( ¯̂r(1)
0en−, ¯̂β (1)

en−) it is valid ¯̂r(1)
0en− = ¯̂r(1)

0le f t− and ¯̂β (1)
en− =

¯̂β (1)
le f t−), restricts from the left the area of propagation

Fig. 9. Phase curves ¯̂β (1)
−

(
¯̂r(1)
0−

)
of the slow T̂ E

(1)
01 mode in the

circular ferrite waveguide for −1 < α̂(1)
− < 0.

Fig. 10. Phase curves ¯̂β (2)
−

(
¯̂r(2)
0−

)
of the slow T̂ E

(2)
01 mode in the

circular ferrite waveguide for α̂(2)
− <−3.

in case of weak anisotropy (Fig. 9). It has a minimum

min ¯̂r0le f t− = 2L̂(3, 1) at α̂(1)
−,min =−1

√
2 and ¯̂β (1)

le f t−,min =

1
√

2. A comparison of both sets of curves shows that
a large slowing down is provided if the anisotropy is

strong, especially in case ¯̂r(2)
0 is small (see Fig. 10). Ferrite

switches and isolators are the possible applications of the
structure.
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11. Areas of T E01 mode propagation

The joint consideration of the results of analysis of the
anisotropic waveguide shows that in case of positive (coun-
terclockwise) magnetization there is one (densely hatched)
area in which normal T E01 mode is supported (Fig. 11).
If the magnetization is negative (clockwise), the areas are
already three: one (densely hatched) of normal and two
(sparsely hatched) of slow wave propagation (Fig. 12).

Fig. 11. Areas of T E01 mode propagation in case of positive
magnetization.

Fig. 12. Areas of T E01 mode propagation in case of negative

magnetization.

An important corollary of Theorem 1 is the coincidence
of the envelopes of characteristics for Mr < 0 of the normal
(Fig. 8) and the slow mode (Fig. 9) in one curve (the dotted
line in Fig. 12, labelled En1−) which does not belong to any
of the zones and serves as their common border, delimiting
them. Indeed, since in view of Eq. (12) L(3,1) = L̂(3,1),

the points (r̄0en−, β̄en−) and ( ¯̂r(1)
0en−, ¯̂β (1)

en−) in the r̄0− β̄
phase plane, forming the En1− and Ên1− – characteristics

for the T E01 and T̂ E
(1)

01 modes, respectively, are identi-

cal for all values of parameters α− = α̂(1)
− whose intervals

of variation, determined by the corresponding propagation
conditions in Sections 9.3 and 10.2, are the same. Area
number (2) for the slow wave is separated from aforesaid
two ones by a region where no transmission is allowed.

12. Conclusions

Some basic concepts of the theory, the special cases and
examples of the use of the CHFs in different fields of
physics are considered. The opinion is declared that a uni-
versal mathematical procedure, based on them would suc-
cessfully substitute the methods for analysis of a large num-
ber of tasks, utilizing the numerous functions which are
their special cases. This approach would make possible to
reveal the interior connections among plenty of phenom-
ena and would facilitate the physical interpretation of the
results from their description, as well as the process of their
generalization.
The problems for normal and slow rotationally symmetric
T E modes in the circular waveguide, uniformly filled with
azimuthally magnetized ferrite are threshed out as a sphere
of microwave application of the complex, and real Kum-
mer CHFs rescpectively. The propagation conditions and
phase characteristics of the structure are obtained, using
various properties of the wave function, established analyt-
ically and/or numerically. The main result of the study is
that for positive (negative) magnetization one area of nor-
mal (three areas – one of normal and two of slow) T E01

mode propagation exists (exist). The region of normal and
the first one of slow waves transmission in case of negative
magnetization are demarcated by an envelope curve which
can be traced by means of a numerically proved theorem
for identity of the zeros of certain Kummer functions. The
areas mentioned are separated from the second one for slow
wave propagation by a zone in which no fields can be sus-
tained. The phase behaviour reveals the potentialities of
the structure as a remanent phaser (for normal waves) or
as a current controlled switch and isolator (for both kinds
of waves). The criterion for phaser operation of waveguide
is deduced as a direct corollary of the aforesaid theorem
for the zeros. A large number of configurations, contain-
ing a central ferrite rod of azimuthally magnetized ferrite,
coated by an arbitrary number of dielectric layers could
be described, extending the analysis method based on the
Kummer CHFs.
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