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Abstract—This paper is devoted to evaluating the per-

formance of Space-Memory-Memory (SMM) Clos-network

switches under a packet dispatching scheme employing static

connection patterns, referred to as Static Dispatching (SD).

The control algorithm with static connection patterns can

be easily implemented in the SMM fabric due to bufferless

switches in the first stage. Stability is one of the very impor-

tant performance factors of packet switching nodes. In gen-

eral, a switch is stable for a particular arrival process if the

expected length of the packet queues does not increase with-

out limitation. To prove the stability of the SMM Clos-network

switches considered under the SD packet dispatching scheme

the discrete Markov chain model of the switch is used and

Foster’s criteria to extend Lyapunov’s second (direct) method

of stability investigation of discrete time stochastic systems are

used. The results of simulation experiments, in terms of aver-

age cell delay and packet queue lengths, are shown as well.

Keywords— Clos-network switch, packet dispatching algorithms,

packet switching network, stability of switching network

1. Introduction

Connecting paths between input and output ports in

switches/routers are provided by switching fabrics, which

are the main part of every packet switching node. The

switching fabrics replace buses which are too slow, mainly

in medium-sized and high-end routers and switches. They

can establish connections between input ports and requested

output ports, while simultaneously transmitting packets.

Single-stage switching fabrics known as crossbar switches

are used mainly in medium-sized routers/switches [1].

Basically, an N×N crossbar switch consists of a square ar-

ray of N2 individually operated crosspoints (N represents

the number of inputs and outputs). Each crosspoint has two

possible states: cross (default) and bar, and corresponds

to the input-output pair. A connection between input port i

and output port j is established by setting the (i, j)-th cross-

point to the bar state, while letting other crosspoints along

the connecting paths remain in the cross state. The crossbar

switch can transfer up to N cells from different input ports

to different output destinations within the same time slot.

The control algorithm for the crossbar fabric is very simple,

as the bar state of the crosspoint can be triggered individu-

ally by each incoming packet when its destination matches

the output address. Crossbar fabrics are complex in terms

of the number of crosspoints, which grows as N2. The ar-

bitration process that has to choose packets to be sent from

inputs to outputs within each time slot can also become the

system’s bottleneck, as the switch size increases.

In high-end routers, multi-stage or even multi-stage and

multi-plane switching fabrics are used. These types of

switching fabrics are currently used by network equipment

vendors in core routers, e.g. Cisco’s CRS series, Juniper’s

T series, and Brocade’s BigIron RX Series. For exam-

ple, in Cisco’s new router called Carrier Routing System-X

(CRS-X), a multi-stage and multi-plane switching fabric is

used. This family of routers focuses on the extreme scale.

One standard deployment of a 7-ft rack chassis of CRS-X

routers can deliver up to 12.8 terabits per second. The sys-

tem can be clustered together in a massive configuration of

up to 72 chassis, which would deliver up to 922 Tb/s of

throughput [2].

Clos-network switches are a very attractive solution for core

routers because of their modular and scalable architecture.

The Clos-network fabric is composed of crossbar switches

arranged in stages [3]. According to the required combina-

torial properties, it is possible to build [4]:

• strict-sense nonblocking (SSNB),

• wide-sense nonblocking (WSNB),

• rearrangeable (RRNB),

• repackable (RPNB) non-blocking networks.

In SSNB [3] networks, no call is blocked at any time.

WSNB [5], [6] networks are able to connect any idle input

and any idle output, but a special path-searching algorithm

must be used. RRNB [5] networks can also establish the re-

quired connections between any idle input-output pair, but

a rearrangement of some existing connections to other con-

necting paths may be needed to change the network state

in order to unblock a blocked call. RPNB [7], [8] networks

employ rearrangements after call termination to prevent the

switching fabric from entering blocking states. The pre-

sented classes of switching networks were proposed in the

past, when circuit-switching telephone exchanges supported

voice traffic.
Currently, telecommunication networks focusing on packet

services and high-speed switching fabrics adopt the use
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of fixed-length packets called cells. All incoming variable-

length packets (e.g. IP packets) are segmented at ingress

line cards into fixed-size cells. Next, they are transmit-

ted within time slots through the switching fabric, and re-

assembled into packets at egress line cards, before they

depart [1]. In high-speed routers it is not necessary to use

SSNB switching fabrics, because a new set of connecting

paths may be set up for each time slot. RRNB fabrics are

sufficient to satisfy all requirements related to one-to-one

connections between all sources and destinations. They can

establish connecting paths for all possible permutations of

input-output pairs. These connections can be established

on a call-by-call basis or simultaneously for a given set

of inputs and outputs. The former technique employs rear-

rangements of the existing paths when a new call cannot be

set up. In the latter method, parallel processing of all re-

quired input-output connections is carried out and, next, the

connecting paths are set up simultaneously in the switch-

ing fabric.
The main difference between circuit switching and packet

switching fabrics is that in circuit switching systems, when

the output port is busy, the call is lost. In packet switching

fabrics, when outputs are busy, cells are buffered and wait

in queues. This means that queues of cells destined for, let’s

say, a very popular output port, may grow, because many

cells should be sent to the same output port, but only one

cell can be sent out within one time slot.
While a cell is being routed in a packet switching fabric,

it can face a contention problem resulting from the fact

that two or more cells compete for a single resource. Algo-

rithms that can solve contentions, are usually called packet

dispatching schemes. Cells that have lost contention must

be either discarded or buffered. Buffers are also used to

alleviate the complexity of packet dispatching algorithms

and to absorb possible contentions. According to buffer al-

location schemes, Clos-network packet switches are classi-

fied as: Space-Space-Space (SSS or S3), Memory-Memory-

Memory (MMM), Memory-Space-Memory (MSM), and

Space-Memory-Memory (SMM) switches. MSM Clos-net-

work switch seems to be the best architecture investigated.

The basic packet dispatching algorithms for this kind of

switching fabrics were proposed in [9], [10]. A modified

MSM Clos-network switch was proposed and investigated

in [11].
In this paper, we analyze the SMM Clos-network switch,

where bufferless modules are used in the first stage and

buffered crossbars in the second and third stages. Due to

bufferless modules in the first stage, a very simple control

algorithm may be implemented to distribute cells to the

central modules, e.g. static dispatching (SD). The SMM

architecture was proposed in [12], where an analytical anal-

ysis for admissible traffic was performed. In [13], different

kinds of backpressure schemes between central modules

and input modules are evaluated, in terms of maximum

buffer usage in central modules. The packet dispatch-

ing scheme proposed in [14] uses static dispatching pat-

terns and internal backpressure signals. It is dedicated for

SMM Clos-network switches, where the second and third

stages are made of crosspoint queued (CQ) switches [15].

In [16], a fault-tolerant desynchronized static round-robin

(FT-DSRR) cell dispatching algorithm was proposed. The

FT-DSRR algorithm is an adaptation of the DSRR algo-

rithm to SMM Clos-network switches, where serious cross-

point faults induced by harsh space radiation environment

may take place. It may be used to control onboard switches.

This paper deals with an SMM Clos-network switch, where

output queued switches are used in the second and third

stages. The main contribution of this paper is the proof of

stability of the SMM Clos-network switch using the Dis-

crete Time Markov Chain (DTMC) model and an analyt-

ical approach based on Foster’s stochastic criteria, analo-

gous to the direct method of Lyapunov which was aimed

at inferring about the stability of deterministic dynamic

systems. The theoretical results were verified by simula-

tion investigations of RRNB and SSNB architectures of

a network under uniform and non-uniform traffic distribu-

tion patterns.

The remainder of this paper is organized as follows. Sec-

tion 2 introduces some background knowledge concern-

ing the SMM Clos-network switch and the SD algorithm.

In Section 3 input traffic analysis is performed. Using

a stochastic Lyapunov-like analytical method, we prove that

the investigated switching fabric is stable under the SD

packet dispatching scheme in Section 4. Section 5 presents

simulation results obtained for the SD scheme. We con-

clude this paper in Section 6.

2. SMM Clos-Switching Fabric

and SD Scheme

The three-stage Clos switching fabric architecture is de-

noted by C(m, n, r), where the parameters m, n, and r en-

tirely determine the structure of the network. There are

r input modules (IM) of capacity n × m in the first stage,

m central modules (CM) of capacity r × r, and r out-

put modules (OM) of capacity m × n in the third stage.

The capacity of this switching system is N × N, where

N = nr. The three-stage Clos-network switch is strictly non-

blocking if m ≥ 2n−1 and rearrangeable non-blocking if

m ≥ n.

In the basic SMM Clos-network switch (shown in Fig. 1),

the first stage consists of r bufferless IMs with n input

ports (IPs) each. The second stage consists of m CMs, and

each of them has r FIFO buffers (COQs), one per out-

put. A maximum of r cells from r IMs may arrive at one

COQ buffer, so it must work r times faster than the line

rate. The third stage consists of r OMs, where each output

port OP( j,h) has FIFO output buffer (OQ). A maximum

of m cells from m CMs may arrive at one OQ, so to store

all cells during one time slot it must work m times faster

than the line rate. The interstage links between IMs and

CMs are denoted by LI(i,k), where i represents the num-

ber of IMs, and k – the number of CMs, whereas LC(k, j)
denotes interstage links between CM(k), and OM( j). In-
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stead of using shared-memory CM and OM modules, it

is possible to employ CQ switches, where speed-up is not

necessary [15].

Fig. 1. An SMM Clos-network switch.

The SD scheme investigated in this paper seems to be the

simplest packet dispatching algorithm that can be imple-

mented in the SMM Clos-network switch. It is an adapta-

tion of the Static Round-Robin Dispatching (SRRD) to the

SMM Clos-network switch, and is less demanding in terms

of hardware, in comparison with other proposed schemes

(e.g. [14]). The SD scheme does not need any special arbi-

tration, e.g. the handshaking processes, to distribute cells to

the CMs. The key idea of the scheme is based around static

connection patterns which are used in each IM. The con-

secutive static connection patterns used in IMs are shown

in Fig. 2.

Fig. 2. A sequence in which the static connection patterns should

be changed in each IM of capacity 3 × 3.

The connection patterns are the same in all IMs and are

shifted to the next one in consecutive time slots. Cells

arriving at each input are at once distributed to the CMs,

and are stored in COQs related to the destined OMs. In

the first time slot, cells from IP(x,1) are sent to CM(1),
from IP(x,2) to CM(2), from IP(x,3) to CM(3); in the

second time slot, cells from IP(x,1) are sent to CM(2),
from IP(x,2) to CM(3), from IP(x,3) to CM(1), and so on.

Arriving cells are evenly distributed to CMs, to decrease

cell delay within the SMM Clos-network switch. The SD

scheme may be also adopted in the MSM Clos-network

switch [7].

3. Input Traffic Analysis

We assume that the traffic directed to each input port IP(i, h)

can be modeled by an i.i.d. Bernoulli process, where the

number of successes – which means the number of cells

arriving in t time slots (in t trails) is tpB with pB denoting

the probability of success in one trial. In such a case, the

ports’ arrival rate is expressed by the expected value:

λIP = lim
t→∞

t pB

t
= pB . (1)

Therefore, the input traffic arriving at one input module is

equal to λ IM=npB, and at the whole switching fabric, all

input modules – rnpB. The SD algorithm balances this in-

put load on CMs and after m time slots the central modules’

arrival rate can be expressed in the following way:

λCM =
n pB r

m
. (2)

There are output queues (COQs) in each central module

which stores cells destined for the predetermined OMs.

When analyzing the input rate of these queues, it is easy to

see that this rate can be assessed as:

λCOQ(i, j) =
npB r

m
pi j , (3)

where pi j represents the probability of a cell arriving from

the i-th input module being destined for the j-th output

module. For example, with traffic uniformly distributed to

the output ports and, in consequence, to the output modules

OMs, pi j = 1/r. This means that even for the maximum

input port load, i.e. for pB = 1, the rate λCOQ(i, j) is less

than or equal to 1, if the number of OMs is m ≥ n.

In the investigated SMM Clos-network architecture, each

central module CM has one link to each OM. This ensures

that in each time slot from any non-empty COQ(i, j), one

cell will be sent to the appropriate OM( j), which can be

described by the COQ(i, j) queue’s service rate µ = 1.

4. Stability Proof

The theory of stability for deterministic dynamic systems

was founded by Lyapunov [18] (see also [19] for survey of

stability ideas) who invented two methods of stability inves-

tigation. His second method, known as Lyapunov’s second

method or indirect method, turned out to be very effective in

proving the stability of a very wide spectrum of determin-

istic systems – linear, non-linear, continuous and discrete.

Later, Lyapunov’s ideas were extended to stochastic sys-

tems, mainly by Foster [20]. The application of this theory

to Markov chains was due to Meyn and Tweedie [21].

The term stability, in the context of dynamic systems de-

scribed by ordinary differential equations, is commonly

used to mean asymptotic stability, i.e. convergence of a sys-

tem’s state paths to a fixed, stable, point.

With Markovian systems, convergence must be understood

in a distributional sense and, therefore, is called stochastic
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stability. It considers stochastic convergence in the time of

a Markov chain X = (Xn; n = 0,1, . . .), as n → ∞.

In general terms, the Markov chain is topologically sta-

ble if there is a positive probability that it does not leave

the compact center of the state space (which is called non-

evanescence [21]), or, using a stronger condition, if the dis-

tributions of the chain as time evolves are tight (bounded

in probability [21]). Meyn and Tweedie say the chain is

probabilistically stable if it returns to sets of positive mea-

sure (Harris recurrence), or if there is a unique invariant

probability measure for it (positive Harris recurrence) [21].

According to [20] and [21], the stability proof of stochastic

systems modeled by Markov chains must show:

1. the irreducibility of the chain, which means that start-

ing from any initial state, it is possible to arrive in

subsequent transitions on any other state of the chain.

Figs. 3 and 4 show examples of irreducible and non-

irreducible Markov chains;

2. the positive recurrence of the chain, which can be

done by demonstrating the negative drift of the Lya-

punov function.

Fig. 3. Example of an irreducible Markov chain.

Fig. 4. Example of a non-irreducible Markov chain.

The positive recurrence of the irreducible chain’s state

means (see for example [21]) that

E(τi|X0 = i) < ∞ . (4)

That is, if state i is positive recurrent, then the chain comes

back infinitely often to state i and the time τi between two

consecutive visits is finite.

Denoting by Pi the conditional probability of the process

started at state i, we say, by definition (see for exam-

ple [21]), that a state i is:

1. transient if Pi(τi = ∞) > 0,

2. null recurrent if Pi(τi < ∞) = 1,

3. positive recurrent if it is recurrent and Ei(τi) < ∞.

For irreducible Markov chains, condition (4) implies

a positive recurrence of state i and, hence, a positive re-

currence of the whole chain, i.e. in a given class, all states

are either positive recurrent, null recurrent or transient.

Lemma 1: If X is irreducible, then all states are of the

same type.

Proof: The proof can be based on the following fact:

If X is irreducible and j 6= k are any two states, then

Pj(τk < τ j) > 0. Now, let us assume the opposite – that

this probability equals 0. Then, by the strong Markov prop-

erty, the process starting from j would never visit state k.

This is, however, in contradiction with the irreducibil-

ity of X.

Let S be the state space of a given DTMC and let P ⊂ S
be a finite subset of S. Denoting by τP the time of the first

visit to set P, one can state the following generalization of

condition (4) (according to the guidelines in [21]):

Lemma 2: Let X = (Xn; n = 0,1, . . .) denote an irreducible

DTMC with state space S and let P ⊂ S be a finite subset

of S. Chain X is positive recurrent if and only if:

E(τP|X0 = i) < ∞ for all i ∈ P . (5)

However, it is rather difficult to determine with Eq. (5)

whether a given Markov chain is positive recurrent or not.

Here, the Lyapunov-Foster criteria can be used [20]:

Let X = (Xn; n = 0,1, . . .) be an irreducible Markov

chain defined on some countable space S with transition

probabilities pi j, i, j ∈ S. On the basis of [20], we

can state:

Theorem 1: The Markov chain X is positive recurrent if

and only if there exists a finite set S0 ∈ S and a function

V: S → R+ with inf{ f (i) : i ∈ S} > −∞ and a constant

ε > 0 such that:

∑
j∈S

pi jV ( j) < ∞ for all i ∈ S0 , (6)

and

∑
j∈S

pi jV ( j) ≤V (i)− ε for all i /∈ S0 . (7)

The function V: S → R+ is commonly referred as the

Lyapunov-Foster function.

Equations (6)–(7) can be rewritten in the equivalent form:

E[V (Xn+1)|Xn = i] < ∞ for i ∈ S0 , (8)

and

E[V (Xn+1)−V(Xn)|Xn = i] ≤−ε for i /∈ S0 . (9)
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Looking at Eq. (8)–(9), it is easy to notice that Foster’s

criteria can be interpreted as conditions for the Lyapunov’s

function drift, which is in analogy with Lyapunov’s stability

direct method for dynamical systems described by ordinary

differential equations.

The function fulfilling Lyapunov’s conditions can be re-

garded as a Lyapunov candidate function (only a candidate

function which allows stability proving is called a Lyapunov

function). There are requirements imposed on Lyapunov

candidate function V (x) [18]:

1. V (x) is scalar on the investigated system’s state vec-

tor x; switching networks’ states are determined by

queue lengths,

2. is positive definite, i.e.: ∀
x6=0

V (x) > 0; V (0) = 0,

3. V (x) grows with the state growth of the investigated

system which, in our case, means that it grows with

the length of switching network queues,

4. for continuous systems: V (x) ∈C1.

Speaking generally, there are two levels of stability [18]–

[21] – the so-called weak stability and the asymptotic sta-

bility. A proof of weak stability for a given switch network

guarantees its full, 100% throughput, but does not prede-

termine the maximum delay of cells, which in general may

be unlimited. The asymptotic stability is a more demanding

level of stability, which guarantees not only full through-

put of the network, but also a finite value of the maximum

cell delay.

Formally, the switching system in which the packet (cell)

arrival is an independent random process is characterized

by the weak (in Lyapunov sense) stochastic stability if for

every ε > 0 there exists δ > 0 that:

∀
ε>0

∃δ > 0 lim
t→∞

P{‖qt‖ > δ} < ε , (10)

or

∀
ε>0

∃δ > 0 lim
t→∞

P{‖qt‖ < δ} < 1− ε , (11)

where P{Z} denotes the probability of event Z, and ||qt ||
is any norm of qt – the measure of queues in the system.

The asymptotic stochastic stability is defined as follows:

a switching fabric in which the packet (cell) arrival is

an independent random stationary process characterized by

asymptotic stochastic stability if:

lim
t→∞

supE{‖qt‖} < ∞ . (12)

Inequality (12) means that the maximum expected value

of ||qt || is finite. Asymptotic stochastic stability guarantees

limited average queue lengths and limited cell delay times.

As shown above, the dynamics of the SMM switching fab-

ric is determined by COQ queues (due to static connec-

tions of the central stage with the first and third stages,

contentions are possible only in the COQ queues).

Let us note that the dynamics of the COQ(i, j) queue

can be represented by the Markov chain’s state diagram

Fig. 5. State graph of a COQ(i, j) queue.

depicted in Fig. 5, where λ represents the queue arrival

rate – λCOQ(i, j), and µ – is the queue service rate.

The proof of stability of this queue can be based on the

Foster-Lyapunov criterion [19]–[21]. It requires that the

Lyapunov candidate function V (qt), defined on the queue

length, has a negative drift, strictly that:

∀
‖qt‖>ε

E [V (qt+1)−V(qt)|qt ] < −δ . (13)

In the following proof of stability, Lyapunov candidate

function is chosen as the simplest possible one:

V (qt) = qt . (14)

The selected function V (qt) satisfies the Lyapunov candi-

date function requirements specified above. After substitut-

ing the selected function V (qt) into the left-hand side of

inequality (13) and taking into account the graph in Fig. 5:

E [V (qt+1)−V(qt)|qt ] = E[qt+1|qt ]−E[qt|qt ] =

= E[qt+1|qt ]−qt =
[

λ
λ+µ (qt +1)+

+ µ
λ+µ (qt −1)

]

−qt = λ−µ
λ+µ ,

(15)

eventually, the stability condition is:

λ −µ
λ + µ

< 0 . (16)

The drift is negative when λ < µ . For µ = 1, the system

will be weakly stable (stable in Lyapunov sense) for λ < 1.

It is worth noting that it does not follow that for λ = 1

the system will not be stable. The Lyapunov method proves

only the stability, and if that fails, the instability of the

studied system does not follow from it.

In order to prove the asymptotic stochastic stability, it

should be shown that:

∀
‖qt‖>ε

E [V (qt+1)−V(qt)|qt ] < −δ ‖qt‖ . (17)

For this purpose, we need another Lyapunov candidate

function V (qt) – we choose it as:

V (qt) = q2
t . (18)
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The drift of this function is:

E
[

V
(

qt+1
)

−V
(

qt
)∣

∣qt
]

=E
[

q2
t+1

∣

∣qt
]

−E
[

q2
t
∣

∣qt
]

=

= E
[

q2
t+1

∣

∣qt
]

−q2
t =

[

λ
λ+µ (qt +1)2+

+ µ
λ+µ

(

qt−1
)2

]

−q2
t = λ

λ+µ
(

q2
t +2qt+1

)

+

+ µ
λ+µ

(

q2
t −2qt+1

)

−q2
t = q2

t

(

λ
λ+µ + µ

λ+µ −1
)

+

+2qt

(

λ
λ+µ −

µ
λ+µ

)

+ λ+µ
λ+µ =

= 2qt
λ−µ
λ+µ +1 = 2qt

−(µ−λ )
λ+µ +1 .

(19)

Solving the inequality:

2qt
−(µ −λ )

λ + µ
+1 < 0 , (20)

the conditions for asymptotic stability can be determined.

For µ = 1 we obtain:

qt >
λ +1

2(1−λ )
and λ < 1 . (21)

This means that the asymptotic stability will only occur for

a sufficiently large qt , for example, assuming λ = 0.9, this

will be an average of 10 cells, that is, when the value is

reached, the cell delay will be limited and stabilized.

5. Simulation Experiments

The experiments have been carried out mainly for the

RRNB Clos-network switch C(8,8,8) of size 64 × 64

(8 switches in each stage) under the SD algorithm. The

SSNB C(8,16,8) architecture, with 8 switches in the first

and last stages, and 15 switches in the second stage was

also investigated. A wide range of traffic loads per input

port, from pB = 0.05 to pB = 1, with the step of 0.05, was

considered in each simulation experiment. 95% confidence

intervals that have been calculated after t-student distribu-

tion for ten series with 250,000 time slots (after the starting

phase comprising 50,000 time slots, which enables reach-

ing the stable state of the SMM Clos-network switch) are

at least one order lower than the mean value of the simula-

tion results, therefore they are not shown in the figures. It

is assumed that in the second and third stages the switches

with output buffers are used, and the size of buffers is not

limited. Three main performance measures have been eval-

uated: average cell delay in time slots, maximum size of

OQs, and throughput. A switch can achieve 100% through-

put under uniform or non-uniform traffic, if the switch is

stable, as it was defined in [22]. It means that the cell

queues do not grow without limitation.

Two packet arrival models are considered in simulation ex-

periments: the Bernoulli arrival model, and the bursty traf-

fic model, where the average burst length is set to 16 cells.

Several traffic distribution models (the most popular one

in this area of research) have been considered, which de-

termine probability pi j that a cell, which arrives at input i,

will be directed to output j. The considered cell distribution

models are: uniform – pi j= pB/N, diagonal – pi j= 2pB/3 for

i = j and pi j= pB/3 for j = (i+1) mod N, and 0 otherwise,

and Hot-spot: pi j= pB/2 for i = j, and pB/2(N-1) for i 6= j.

Selected simulation results are shown in Figs. 6, 7, and 8.

Figure 6 shows the average cell delay, in time slots, ob-

tained for Bernoulli and bursty arrival models, and different

kinds of cell distribution models. The SD algorithm pro-

vides 100% throughput for the investigated switching fab-

ric only for uniform traffic and the Bernoulli arrival model.

Under Bernoulli arrivals, the throughput is limited to 90%

for non-uniform traffic, such as diagonal and Hot-spot. It

is possible to say that the SD scheme, for uniform and

non-uniform traffic distribution patterns under Bernoulli ar-

rivals, performs quite well when the input load is lower

than 0.85. In this case, the average cell delay is not greater

than 10 time slots. For the bursty arrival model, the SMM

Clos-network switch controlled by the SD algorithm is not

Fig. 6. Average cell delay at egress side of the SMM Clos-net-

work switch under the SD scheme.

Fig. 7. Maximum OQ length in OMs under the SD scheme.
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able to achieve 100% throughput for both the uniform and

non-uniform traffic distribution patterns. For the uniform

traffic, the throughput is close to 98%, but for the non-

uniform traffic, the throughput is limited to 80%.

Figure 7 shows the maximum OQ length obtained dur-

ing simulation experiments. These results are consistent

with the charts presented in Fig. 6. It can be seen that for

Bernoulli arrivals the OQ length rapidly grows for a heavy

input load and non-uniform traffic (pB>0.9). In bursty traf-

fic, the OQ length increases very fast for pB>0.75, espe-

cially for non-uniform cell distribution patterns.

Speaking generally, the SD algorithm is very simple to

implement within the SMM Clos-network switch and can

produce good results for the input load of pB<0.7, both

for uniform and non-uniform traffic distribution patterns.

The results related to throughput are not impressive, but

the complexity of this algorithm is very low.

Fig. 8. Average cell delay at egress side of the SMM Clos-

network switch for C(8,8,8) and C(8,15,8) architectures under

bursty traffic.

Figure 8 shows a comparison of the average cell delay

under bursty traffic for RRNB C(8,8,8) and SSNB

C(8,15,8) architectures. As it was stated above, in packet

switching nodes, connection patterns may be changed in

every time slot, so the RRNB switching fabric can set up

all connections possible between inputs and outputs. The

SSNB architecture contains more switches in the second

stage than the RRNB architecture. In this case, cells are

distributed more evenly to a higher number of buffers lo-

cated in the second stage, and can thus reach the destined

output with a lower delay. As it is shown in Fig. 8, the

SSNB fabric can offer 100% throughput and produces bet-

ter results than the RRNB fabric under the SD scheme and

bursty traffic. For input loads lower than 0.9, the average

delay is lower than 100 time slots for all traffic distribution

patterns investigated. The delay grows very fast for input

load greater than 0.9, but the average delay is very high

only for input loads equal to 1, and equals about 5000 time

slots.

6. Conclusions

This paper aims to evaluate performance of the SMM Clos-

network under the packet dispatching scheme employing

static connection patterns, called SD. The system was eval-

uated in terms of stability and basic performance measures,

such as average cell delay and packet queue lengths. In Sec-

tion 4 we showed how to use the DTMC model and an ana-

lytical approach based on Foster’s stochastic criteria, analo-

gous to the direct Lyapunov’s method, to prove the stability

of the SMM Clos-network switch under the SD algorithm.

Taking into account that the stability is proven for ideal, the-

oretical traffic, in Section 5 we showed simulation results

obtained for uniform and non-uniform traffic distribution

patterns, and for Bernoulli and bursty arrival models. Two

architectures of the SMM Clos-network switch were taken

into account: RRNB C(8,8,8) and SSNB C(8,15,8). The

investigated cell dispatching scheme is very simple, but it is

not able to provide satisfactory performance of the RRNB

SMM Clos-network switch for very high input load, greater

than 0.7, especially for bursty traffic The results are better

for the SSNB architecture, but in this case more switches

in the second stage must be used, and the cost of such a

network will be higher. It is also impossible to provide

in-sequence service under this algorithm, which results in

special resequencing buffers at outputs. Furthermore, this

re-sequence function makes a switch more difficult to im-

plement, especially as the port speed and switch size in-

crease.
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