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Abstract—This work presents a new hybrid approach for sup-

porting sequential niching strategies called Cluster Supported

Fitness Deterioration (CSFD). Sequential niching is one of the

most promising evolutionary strategies for analyzing multi-

modal global optimization problems in the continuous do-

mains embedded in the vector metric spaces. In each iter-

ation CSFD performs the clustering of the random sample by

OPTICS algorithm and then deteriorates the fitness on the

area occupied by clusters. The selection pressure pushes away

the next-step sample (population) from the basins of attrac-

tion of minimizers already recognized, speeding up finding the

new ones. The main advantages of CSFD are low memory an

computational complexity even in case of large dimensional

problems and high accuracy of deterioration obtained by the

flexible cluster definition delivered by OPTICS. The paper

contains the broad discussion of niching strategies, detailed

definition of CSFD and the series of the simple comparative

tests.

Keywords—basin of attraction, clustering, fitness deterioration,

genetic algorithm, OPTICS, sequential niching.

1. Introduction

1.1. Global Optimization Problems in Metrizable

Domains

We deal with the class of global optimization problems

(GOP) which are leading to find all global, or even all local

minimizers to the real-valued objective function defined on

the set D (called admissible set) embedded in a finite di-

mensional normed vector space V ⊃D, dim(V ) = N < +∞,

where the norm induces the complete metric (Banach

space). The set D is assumed to be continuous with re-

spect to the metric and regular in some way, usually hav-

ing the Lipshitz boundary. Such spaces are also equipped

with the Lesbegue measure based on the metric (see [1] for

details).

Typical difficulties appearing by solving GOPs are the huge

volume of D, multimodality of the objective and its weak

regularity (sometimes only continuity, or even discontinuity

on the subset of the zero measure).

Stochastic, population-based heuristics (Monte Carlo, Evo-

lutionary Algorithms, Simulated Annealing, Ant Colony,

Particle Swarm, etc.) are best suited to solve GOPs and

they frequently outperform deterministic techniques (see

e.g. [2]). Most of these strategies restrict their search to

a finite subset Dr ⊂D or to the set of codes U (e.g., ge-

netic universum of codes) bijectively mapped on Dr. It

results from the inherent finite property of computer cal-

culations as well as from algorithmic reasons as in case of

genetic algorithms (see e.g. [3]). Because the remaininder

of this paper utilizes mainly genetic techniques we will de-

note by F : D(orDr,U)→ R the generic fitness function

that expresses the GOP objective.

One of the well known disadvantages of some population-

based, stochastic heuristics (especially Genetic Algorithms)

is the premature convergence which consists in long-term

stay of almost all population in the basin of attraction of

the single local minimum. Premature convergence dramati-

cally decreases an ability of finding many local/global min-

ima with the acceptable computational cost assumed as the

number of objective evaluations.

The basin of attraction Bx+ ⊂D of the local or global min-

imizer x+ ∈D may be roughly described as the connected

part of maximum fitness level set that contains x+ and does

not intersect with basins of attraction of other local min-

imizers. The precise mathematical definition of basin of

attraction was introduced by [4], [5] and may be found

also in [3].

1.2. Niching

Niching techniques constitute an important class of adaptive

strategies that can prevent premature convergence. One of

niching techniques, called parallel niching works by forcing

individuals belonging to the single or several populations

working in parallel to search in the basins of attractions of

more then one local (global) minima. Basic information

about this technology may be found in [6], [7] and [8].

Another possibility is to perform niching process sequen-

tially (sequential niching) which forces the single pop-

ulation or the group of populations to move from the

basins of attraction of minima that have been recognized

so far.

1.3. Fitness Deterioration Techniques

The behavior of individuals suitable for niching may be

obtained by the proper fitness modification that leads to its

leveling on the central part of the basin of attraction of local

minima already encountered. Selection removes individu-

als from such areas forcing them to find regions of smaller

fitness, e.g., the basins of attraction of other minima not yet

found. The fitness leveling mentioned above is sometimes

called fitness deterioration [9] or hill crunching [10].
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Sequential niching by fitness deterioration was introduced

by Beasley, Bull and Martin [11]. Exhaustive research in

this direction was performed by Obuchowicz, Patan and

Korbicz. They introduced the class of evolutionary algo-

rithms called Evolutionary Search with Soft Selection –

Deterioration of the Objective Function (ESSS-DOF). The

draft of this strategy is presented in Algorithm 1. The fit-

ness modification performed in the line 8 of Algorithm 1

is based on the formula

F̂(x) = Fmin exp

(

−
N

∑
i=1

(

xi− ȳi

σi

)2
)

, (1)

where ȳi are coordinates of the expected centroid of pheno-

types that correspond to the population Pt and σ2
i stands for

the variance of the individuals location in the ith direction,

while Fmin = F(x∗) is the minimum individual fitness that

appears in the population Pt . Finally N is the dimension of

the admissible domain D.

Algorithm 1: Draft of the ESSS-DOF strategy

1: Create initial population P0;

2: t← 0;

3: repeat

4: Evaluate population Pt ;

5: Distinguish the best fit individual x∗ from Pt ;

6: if (trap test) then

7: Memorize x∗;
8: F ← F− F̂;

9: end if

10: Perform selection with the fitness F;

11: Perform genetic operations;

12: t← t + 1;

13: until (stop condition)

The logical variable trap test is true if the mean fitness in

the population increases less than p% during the last ntrap

genetic epochs, or the standard deviation of the phenotypes

displacement is less than the mutation range during the last

ntrap genetic epochs. The logical variable stop condition

is true if the proper stopping rule for the whole strategy

is satisfied. The simplest possible stopping rule may be

limit the number of genetic epochs after the last fitness

modification during which no trap was found.

Test results of this effective approach to the global search

were presented in [12], [13], [14]. Arabas delivered another

formula for fitness modification that leads to population

niching [7].

1.4. Using Clustering in Fitness Deteriorartion

Telega, Schaefer and Adamska (see [10], [15]) intro-

duced the clustering techniques applied to the random sam-

ple (population) obtained by the genetic algorithm (GA)

in order to make the fitness deterioration more accurate

and effective. The resulted strategy was called Clustered

Genetic Search (CGS).

The basic idea of CGS is to recognize the clusters of in-

dividuals contained in multiset of individuals being the

current population or the sum of current populations ob-

tained from the multi-deme model or being the cumulated

population (e.g., the union of all populations from the pre-

scribed number of last genetic epochs). Clusters should be

sufficiently dense and well separated from each other.

Next the cluster extensions being the regular subsets of

D with the positive measure containing the cluster points

are constructed. Pseudocode of the proposed strategy is

depicted in the Algorithm 2.

Algorithm 2: Draft of the CGS strategy

1: CLE← /0;

2: Create initial population P0;

3: repeat

4: Evaluate fitness F outside CLE;

5: Modify fitness according to (2);

6: Perform GA until the local stooping criterion is sat-

isfied;

7: Recognize new clusters;

8: Construct new cluster extensions and update CLE;

9: until (The whole domain D has been processed) or (A

satisfactory set of cluster extension has been found)

The CGS strategy utilizes the following fitness modification

F̂(x) =

{

F(x) if x ∈D\CLE

Fmax if x ∈CLE
, (2)

where Fmax is the maximum fitness value already encoun-

tered and CLE ⊂D stands for the union of cluster exten-

sions already recognized.

The admissible domain D is divided into hypercubes that

constitute a grid (raster) and the cluster extensions are

unions of hypercubes. Every cluster extension can be rec-

ognized in one or many steps of the main loop. After the

GA is stopped (line 6 in Algorithm 2), new parts of clus-

ter extensions can be detected by the analysis of the den-

sity of individuals in the hypercubes. The hypercube that

contains the best individual is selected as the seed. Neigh-

boring hypercubes with the density of individuals greater

than an arbitrary threshold are attached to the cluster ex-

tension. A rough local optimization method is started in

each new part of the cluster extension, and the result of

this optimization is retained. If this local method ends in

the already recognized cluster extension then this part is at-

tached to it.

The local stopping criterion distinguishes two kinds of be-

havior of the GA utilized by CGS. The first one is that it

finds new parts of cluster extensions after few generations,

and the second is the chaotic behavior (individuals are uni-

formly distributed over D \CLE). The latter corresponds

to the recognition of a plateau (or areas where the fitness

has small variability) outside of the already known cluster

extensions. Other cases are treated as the situation when
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GA does not fit to the particular problem, and a refinement

of SGA parameters is suggested.

The CGS stopping strategy is to check stagnation of a se-

quence of some estimator of distribution of population in-

dividuals. If it does not change, then check if an arbi-

trary number of hypercubes has the density of individuals

below the threshold. If so, then begin the clustering pro-

cedure; otherwise, check if individuals are uniformly dis-

tributed.

Computations show that CGS constitutes a “filter” that

eliminates local minima with small fitness variability and

narrow basins of attraction. Such property can be useful in

some cases. The CGS strategy should be especially con-

venient for functions with large areas of small variability

(areas similar to plateaus) which can be difficult for other

global and local optimization methods.

The Simple Genetic Algorithm (SGA) (see e.g. [3]) was

used in the CGS instance described above. Another im-

plementation utilized the multi-deme Hierarchic Genetic

Search (HGS) (see [16]) and the FMM-EMM method for

finding cluster extensions (see [17]).

The CGS works well if the cluster extensions fall into the

basins of attraction of local and global minimizers and fill

them sufficiently. The CGS correctness and the correctness

of the proposed CGS stopping strategy can be partially

verified for the case of SGA sampling (see [3], [15], [18]).

Summing up, CGS may be classified as the sequential nich-

ing, even if the parallel HGS is applied as the sampling en-

gine and if more than one cluster extension is encountered

in its single step.

1.5. Critical Remarks

Deep analysis of the deterioration techniques presented in

Subsections 1.3, 1.4 exhibits their several serious disadvan-

tages:

• Huge memory complexity of memorizing the cluster

extensions which appears especially in case of CGS

with a raster representation of cluster extensions and

a large dimension N of the admissible domain D. In

the computational practice, the GOP with N greater

then 10 may bring the memory problems.

• Unsatisfactory accuracy of fitness approximation on

the area of cluster extensions that leads to the in-

correct deterioration and finally may lead to remov-

ing individuals from unchecked areas or the multiple

check of non-promising areas already browsed.

• In cases of both strategies described in Subsec-

tions 1.3, 1.4 the error has a different origin. In

the case of ESS-DOF the approximation of fitness in

area surrounding local minimum (see Eq. (1)) is very

rough and might be unsatisfactory in case of elon-

gated basins of attraction. No matter how CGS finds

the area of fitness leveling quite good as the clus-

ter extensions, the fitness modification by the general

constant (see Eq. (2)) may result in artifacts (artificial

minima) at the borders of cluster extensions.

• The strong dependency of deterioration technique

from the evolutionary technique used which can be

especially observed in ESS-DOF. This feature gener-

ally prevents the use of deterioration in the transpar-

ent way in case of complex, adaptive strategies with

many genetic engines. Sometimes this dependency

might be helpful by profiling deterioration according

to the particular GA instance.

The above discussion clearly shows the way of necessary

improvements. A deterioration technique that combines

low memory complexity of the exponential fitness improve-

ment F̂ with the accuracy of clustering will be presented

in following sections.

2. New Approach for Sequential

Niching with Fitness Deterioration

We suggest another approach to sequential niching which

exploits some of the ideas from [9], [10], [17] and which

tries to overcome problems specified in Subsection 1.5. This

strategy is called Cluster Supported Fitness Deterioration

(CSFD).

2.1. Algorithm Description

In principle the algorithm works like the CGS strategy pre-

sented in [10]. It uses GA to obtain a random sample (pop-

ulation of individuals) from the domain D. If the problem

space contains some robust solution located inside broad

basins of attraction, it is very likely that individuals re-

turned from the GA will gather inside one or more of such

basins, so the next step of the algorithm is to apply the

clustering algorithm to distinguish groups of individuals

(clusters) from the population. Under the assumption that

distribution of individuals inside a given cluster provides

information about the topology of the basin in which the

cluster resides, the algorithm approximate the basin using

this information in order to deteriorate the fitness over the

basins area and thus to prevent convergence to the same

solutions multiple times.

2.2. Cluster versus Cluster Extension

Let us make a clear distinction between two important no-

tions of the cluster extension and the cluster itself, which

are necessary for further research.

Definition 1: We will call by cluster C a selected subset

of the population P (the mulitset of individuals) returned

by GA. We assume that each cluster will be disjoint with

the other cluster from P (i.e., when Ci,Ck are clusters, then

i 6= k =⇒Ci∩Ck = /0).

The individuals are assigned to the clusters using the

method described in Section 3. Generally, individuals that

belong to a particular cluster C have to be densely dis-

tributed and well separated from individuals from other

clusters.
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Definition 2: The extension CE of the cluster C is the con-

nected and regular subset of the admissible domain D with

the positive measure, containing the cluster points, i.e., each

element from C belongs to CE . Regular set means here the

set with the Lipshitz boundary (see e.g. [1]).

Cluster extensions may be obtained in many different ways.

One of them is the raster procedure introduced by [15]

described in Subsection 1.4.

Here we will use the cluster extensions CE being the el-

lypsoid whose middlepoint is located at the cluster C cen-

troid and the measures of diversity of individuals inside C

(e.g. in the form of standard deviation) in order to determine

the length and the direction of its axes (see Section 4).

The CSFD strategy runs the GA and then distinguishes

clusters from the resulting population and constructs their

extensions in each iteration. The information contained in

each cluster allows for effective finding the good approxi-

mation of the local minimizer x+ contained in its extension

(e.g., by running the accurate local method starting from

the best fitted individual in the cluster). Another advan-

tage is the ability to approximate the shape and the volume

of basins of attraction Bx+ by cluster extensions. This in-

formation is utilized by the fitness deterioration technique

(see Section 4). It might be also helpful for the stability

analysis of x+.

It may happen that cluster extensions obtained from two or

more clusters lie inside the same basin of attraction. This

may happen when in one iteration we manage to deteriorate

only a part of the basin of attraction and in the next iteration

we obtain the cluster inside other part of the basin. We will

use the procedure suggested by [15] in order to detect such

situation starting a single local, cheep method from each

new cluster extension. If the method converges inside one

of existing cluster extensions CE , then CE and CE ′ are

joined (which indicates the fact that both CE ′ and CE lie

in the same basin).

2.3. CSFD Pseudo-Code

The CSFD strategy takes a hybrid approach which uses an

arbitrary GA to obtain a random sample from which it tries

to extract as much information as possible in order to find

approximations of basins of attraction. The only need for

the GA is to be well tuned to the GOP to be solved, i.e., the

population has to concentrate in a basin of attraction of at

least one local robust minimizer (see [3]). Then the fitness

deterioration is applied in localized areas to prevent explo-

ration of the same basins multiple times during the course

of the search. Algorithm 3 shows the general idea behind

the Cluster Supported Fitness Deterioration. The algorithm

components will be described in a top-down manner in next

sections, here we provide the general overview only.

The condition in “while” statement (line 2, Algorithm 3)

should be treated as a control statement rather than the

real termination criterion. The CSFD stopping criterion

is based on the conditions checked inside the main loop

(line 6, Algorithm 3). If the clustering algorithm has found

Algorithm 3: Draft of the CSFD strategy

1: CL← /0

2: while i < maxGenerationNumber do

3: execute(GA)
4: pop← getPopulation(GA)
5: clusterStruct← extractClusterStruct(pop)
6: if noClusters(clusterStruct) then

7: return

8: end if

9: detFitness←
per f ormFitnessDet(clusterStruct,currentFitness)

10: if quality(detFitness,currentFitness, pop) < th

then

11: return

12: end if

13: CL←CL∪ clusters

14: updateFitness(detFitness)
15: popSize = popSize + indNum

16: end while

no group of similar individuals or the deterioration has

a low quality, CSFD is stopped and returns all clusters

found.

In each iteration we execute the GA (line 3, Algorithm 3)

which is treated as a black-box algorithm, i.e., we do not

need to modify or know the implementation of the GA

used. Then we take the population returned by the GA

and extract so called clustering structure (described with

details in Subsection 3.1) which contains the information

about clusters and their internal mean densities. Note that

so far we have not clustered the population returned by

the GA, instead we extract the information about the inter-

nal clustering structure for further processing. If the clus-

tering structure contains promising clusters then we per-

form the fitness deterioration – the process of degradation

of the fitness landscape in areas occupied by clusters of in-

dividuals which are assumed to agglomerate inside basins

of attraction. In the line 9, Algorithm 3 we execute the

complex procedure per f ormFitnessDet (described in de-

tails in Subsection 3.1) which actually performs the clus-

tering and fitness deterioration. Next in the line 10, Al-

gorithm 3 we check if the new fitness (returned by the

procedure per f ormFitnessDet) fulfills the quality require-

ments described in Section 4. Finally, we save the clus-

ters returned by the deterioration process and update the

fitness function for further iterations (lines 13, 14, Algo-

rithm 3). Exploratory capabilities can be increased during

later iterations by increasing the population size of the GA

(line 15, Algorithm 3). The CSFD strongly depends on the

clustering algorithm used as a way to find parts of basins

of attraction and as a global termination criterion for the

CSFD algorithm (see Subsection 2.4).

2.4. Termination Conditions

Two types of stopping and termination criterions are used

by CSFD:
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• Local termination criterion which is used as a stop-

ping criterion for the GA inside the main loop of

the CSFD.

• Global stopping criterion which is based on the result

of the clustering algorithm applied to the population

returned by the GA and which finishes the whole

CSFD strategy.

The termination criterion in classic evolutionary algorithms

is hard to define and very often problem dependent, as we

do not have any global information about the fitness land-

scape and therefore we can only compare one solution to

another previously found. For a local termination criterion

we may use some of the standard well-known stopping cri-

teria for evolutionary algorithms like:

• Expected first hitting time (FHT) (see e.g. [2]) which

tries to set meaningful upper bounds for the number

of iterations required to reach the sufficiently small

neighborhood of solution.

• Efficiency measures (see e.g. [6]), e.g., Running

mean, the difference between the current best objec-

tive value found and the average of the best objective

values of the last t generations is equal or less than

a given threshold ε .

In terms of the global stopping criterion we focus on the

distribution of individuals in the admissible domain D.

We follow the idea introduced by Telega [15] and proved

by Schaefer and Adamska [17] to be successful for multi-

modal problems with robust solutions.

The global stopping criterion for CSFD algorithm is based

on the clustering analysis and defined as follows:

The CSFD algorithm is being terminated if the clustering

process applied to the population of individuals returned

by the genetic algorithm returns no clusters or the quality

measure of the fitness deterioration performed on found

clusters is too low.

The clustering, which is performed in every iteration of

the CSFD algorithm, gives us some clues about the global

characteristics of the fitness landscape, i.e., when the clus-

tering algorithm performed on the final population finds

nothing it is very likely that in previous iterations we have

deteriorated the fitness landscape in places where the most

desirable solutions reside and there is no use in continuing

the searching process. This is considered to be true because

we are looking for robust solutions which are resistant to

noise and lie in basins of attraction which are significantly

wide and deep. The population of GA is likely to converge

to such solutions, so having found no clusters of individ-

uals after performing the sufficient number of GA epochs

shows that the population would not converge to any robust

solution.

Such kind of condition may be precisely formulated in

terms of the convergence of sampling measures and par-

tially verified in case if the genetic engine is SGA with the

focusing heuristic (see [3], [15], [18]).

3. Clustering

Clustering algorithms divide a dataset into several disjoint

subsets. All elements in such a subset share common fea-

tures like, for example, spatial proximity. Clustering is used

as a stand-alone tool to get insight into the distribution of

a data set or as a preprocessing step for other algorithms

operating on the detected clusters. The former is used to

determine stop criteria as described in Subsection 2.4 and

the latter is used in our fitness deterioration algorithm to

improve its accuracy.

A cluster extension (see Definition 2) may be seen as an

approximation of the basin of attraction, moreover the dis-

tribution of individuals which were flooded to the basins

provides additional useful information about its shape. The

clustering algorithm may be used to detect the set of indi-

viduals which belongs to the same basin of attraction. The

CSFD provides the information about detected sets (basins

of attraction) in the form of a proper representation of clus-

ter extensions which are just a convenient way to describe

basins of attraction (e.g, the center point, the radius of the

set, covariance matrix, etc.).

Before we perform the clustering analysis of the multiset

of individuals returned by the GA used in the CSFD def-

inition, we have to explicitly map the population P being

the multiset of individuals from the genetic universum U to

the admissible set D being the subset of the vector metric

space V ⊃D . We utilize the injective mapping

ph : U →D (3)

being the encoding or the inverse encoding (it depends upon

the convention). In case in which U = Dr, ph becomes the

identity on Dr.

Moreover we assume that data to be clustered is the popula-

tion P transformed to the multiset of elements from Dr ⊂D

called also P for the sake of simplicity.

3.1. Algorithm OPTICS

We have chosen density-base clustering algorithm called

Ordering Points to Identify the Clustering Structure (OP-

TICS) (see [19]). Density-base clustering generally needs

the data being the subset or the multiset of objects (points)

which belong to a finite dimensional vector metric space V .

Clusters are regarded as subsets in which the objects are

dense and which are separated by regions of low object

density.

In particular each object q of the cluster C has to be sur-

rounded by the neighborhood Nε(q)⊂V of a given radius

ε that contains at least minPts other objects. The formal

definition for this notion is as follows:

Definition 3: An object p ∈ P is directly density-reachable

from an object q∈P with respect to the parameters ε ∈R+,

minPts ∈ N in a set or multiset of data P if:

• p ∈ Nε(q),

• Card(Nε(q)∩P)≥ minPts.
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The condition Card(Nε(q)∩P)≥minPts is called the core

object condition. If this condition holds for an object q,

then we call q a core object. Only from core objects, other

objects can be directly density-reachable.

Definition 4: An object p is density-reachable from an ob-

ject q ith respect to the parameters ε ∈ R+, in the set

or multiset of objects P if there is a chain of objects

p1, . . . , pn, p1 = q, pn = p such that pi ∈ P and pi+1 is di-

rectly density-reachable from pi for i = 1, . . . ,n− 1 with

respect to ε and minPts.

The density-reachability relation is not symmetric in gen-

eral in P. Only core objects can be mutually density-

reachable.

Definition 5: An object p is density-connected to an object

q with respect to ε and minPts in the set or multiset of

objects P if there is an object o ∈ P such that both p and q

are density-reachable from o with respect to ε and minPts

in P.

Fig. 1. Density-reachability and connectivity.

Both phenomena are illustrated by Fig. 1. A density-

based cluster is now defined as a multiset of density-

connected objects which is maximal with respect to density-

reachability and the noise is the set of objects not contained

in any cluster.

Definition 6: Let P be a set or multiset of objects. A cluster

C with respect to ε and minPts in P is a non-empty subset

of P satisfying the following conditions:

• Maximality: ∀p,q ∈ P: if p ∈ C and q is density-

reachable from p wrt. ε and minPts, then also q∈C.

• Connectivity: ∀p,q ∈C: p is density-connected to q

wrt. ε and minPts in P.

Every object not contained in any cluster is noise.

The algorithm DBSCAN (see [20]) discovers the clus-

ters and the noise in a database according to the above

definitions. OPTICS works in principle like an extended

DBSCAN for an infinite number of distance parameters εi

which are smaller than a generating distance ε . The only

difference is that we do not assign cluster memberships.

Instead, we store the order in which the objects are pro-

cessed (the main principle is that we always have to se-

lect an object which is density-reachable with respect to

the lowest ε value to guarantee that clusters with higher

density are finished first) and the information which would

be used by DBSCAN algorithm to assign cluster member-

ships. This information consists of only two values for each

object:

Definition 7: The core-distance of an object p is the

smallest distance ε ′ between p and an object in its ε-

neighborhood Nε(p) such that p would be a core object

with respect to ε ′ if this neighbor is contained in Nε (p).
Otherwise, the core-distance is UNDEFINED.

Definition 8: The reachability-distance of an object p with

respect to another object o is the smallest distance such

that p is directly density-reachable from o if o is a core

object.

The OPTICS algorithm creates the partial order in the pop-

ulation P, additionally storing the core-distance and a suit-

able reachability-distance for each object. This information

is sufficient to extract all density-based clusterings with re-

spect to any distance ε ′ which is smaller that the generating

distance ε . The result of DBSCAN algorithm applied to

sample population of 1000 2-dimensional points is shown

in Fig. 2.

Fig. 2. Visualization of the DBSCAN algorithm applied to OP-

TICS ordering of simple 2-dimensional data set which consists of

1000 points. OPTICS parameters: minPts = 20,ε = 1.2, the two

clusters was found using DBSCAN with parameters: ε ′ = 0.2

Section 4 describes how OPTICS ordering properties are

used to prevent degradation of areas which have not been

explored during the course of the CSFD search.
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4. Fitness Deterioration

Fitness deterioration is a process of degrading the fitness

function in areas occupied by groups of individuals ob-

tained from clustering (see Subsection 1.3 and references

inside). We suggest to achieve this goal in the CSFD strat-

egy by creating a linear combination of the current fitness

function and crunching functions which approximate the

fitness in subsets of problem domain occupied by clusters.

Let Fk be the fitness function in k-th iteration of CSFD

(i.e., in the k-th execution of the main loop of the Al-

gorithm 3) and C1, . . . ,CMk
be Mk clusters found in k-th

iteration of our sequential niching algorithm described in

Section 2. For each cluster Ci we create the crunching

function gi and then we construct deteriorated fitness Fk+1

(which will be used in the (k + 1)-th iteration) as follows:

Fk+1 = Fk +
Mk

∑
i=1

αigi, (4)

where the selection of the functional coefficients

α1, . . . ,αMk
; αi : D→R+, i = 1, . . . ,Mk depends on the type

of deterioration used and will be described later in Subsec-

tions 4.2, 4.3 (see Eqs. (8), (9), (10)).

The crunching function gi : D→R+ is constructed for each

newly recognized cluster of individuals Ci ⊂ P.

Based on the assumption that clusters lie inside basins of

attraction and that the distribution of individuals inside the

cluster is a good approximation of the shape of the basin

occupied by the cluster, the deterioration algorithm tries

to exploit information provided by the clustering algorithm

and based on that information it augments the fitness func-

tion in order to minimize the probability of finding already

explored basins of attraction in further iterations.

We may ask ourselves why we do not prevent exploration

of basins we found in previous iterations simply by re-

membering the regions occupied by clusters and ignoring

individuals which fall in this regions. The answer is prob-

ably the most important reason why we have chosen fitness

deterioration for this task. We can not prevent individu-

als to explore neighborhood of solutions found in previous

iterations because such approach would cause our meta-

heuristic to loose completeness. If the set of search opera-

tions is not complete, there are points in the search space

which cannot be reached. Then, we are probably not able

to explore the problem space adequately and possibly will

not find satisfyingly good solution. That is why it is better

to use fitness deterioration as a way to discourage rather

then prevent individuals from sinking to the same basins of

attraction twice.

Here we would like to emphasize the fact that the deteri-

oration process does not try to accurately interpolate the

fitness function in the neighborhood of the solution be-

cause it would be very expensive in a high dimensional

spaces. Instead it tries to find simple crunching functions

which would sufficiently degrade the fitness landscape in

the areas occupied by the clusters and then remove the in-

dividuals from these regions in the next CSFD steps with

the sufficiently high (but even less then 1) probability.

4.1. Fitness Deterioration and Clustering

To increase the accuracy of the fitness deterioration pro-

cess we want to use the maximum amount of information

provided by the clustering algorithm. As we mentioned ear-

lier (see the description of the fitness deterioration in Sec-

tion 4) we create one crunching function per cluster which,

depending on the shape of the cluster, may not be very ac-

curate or may even degrade areas of the fitness landscape

which have not been explored yet and potentially contain

valuable solutions. Figure 3 shows cases in which crunch-

ing functions created for extracted clusters strongly affect

regions outside the clusters.

Fig. 3. Example of two clusters returned by the clustering al-

gorithm and corresponding Gaussian crunching functions which

degrade areas distant from clusters.

Fig. 4. With OPTICS ordering we may extract cluster of higher

densities and minimize the impact of the fitness deterioration on

regions outside the clusters (instead of creating one crunching

function per cluster like in figure 3 we extract denser clusters

from the ordering and create crunching function which degrade

only the region occupied by the cluster).

To increase the accuracy of our algorithm we use the fol-

lowing property of the OPTICS ordering:

While creating the ordering, OPTICS constructs

density-based clusters with respect to different

densities simultaneously. OPTICS ordering ac-

tually contains the information about the intrinsic

clustering structure of the input data set (up to

the generating distance ε) (see [19]).

This might be shown for sample data (see Fig. 5) by us-

ing its reachability plot. Once we create OPTICS ordering
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we may easily extract clusters with higher densities by de-

creasing ε and choose clusters for which mean-square error

(MSE) between the actual fitness function and the crunch-

ing function in the areas of clusters is minimal.

Fig. 5. Sample data set of 1500 points and the correspond-

ing reachability plot of the ordered points (shows the reachability

distance of each individual in the data set – horizontal axis cor-

responds to the individuals in the data set and the vertical axis

shows the reachability distance of a given individual) OPITCS

ordering parameters: ε = 1.0, minPts = 30. Cavities in the plot

depict 5 clusters which might be extracted from the data set by

the DBSCAN algorithm using proper value of ε ′ values

The algorithm works as follows (see Algorithm 4): having

the OPTICS ordering of the population returned by the EA

our method iteratively extracts clusters with higher densi-

ties by decreasing the neighborhood radius ε (see Fig. 6),

and then by constructing crunching function for extracted

clusters and checking if the resulting crunching functions

is more accurate than the best found in previous iterations

(MSE comparison).

Algorithm 4 effectively prevents the deterioration process

from destroying the fitness landscape in regions not yet

explored by the CSFD algorithm. Figure 4 shows how the

ε adjustment can improve the shape of the cluster extension

with respect to the initial one (see Fig. 3). To better under-

stand how do we use OPTICS ordering to extract cluster of

higher density see Figs. 5 and 6.

Algorithm 4 : Improving fitness deterioration accuracy

1: ε ′ = ε
2: while ε ′ > treshold do

3: cs← extractDBSCANClustering(ε ′)
4: crunchFs← createCrunchingFunctions(cs)
5: mse← getMSE(crunchFs,currentFitness,cs)
6: if mse < minMSE then

7: saveBestCrunching(mse,crunchFs)
8: end if

9: ε ′← ε ′ ∗ 0.8

10: end while

Fig. 6. Extraction of clusters from the data set presented in

Figure 5 using DBSCAN algorithm with ε ′ = 0.15. The value of

ε ′ is marked on the first plot which shows reachability distances

and the “cut off” clusters

4.2. Basic Scheme

The basic version of our deterioration algorithm is as fol-

lows. For each cluster C generate a multidimensional Gaus-

sian function g : V → R+

g(x) = Fk(xmax)exp

(

−1

2
(x−m)T Σ−1 (x−m)

)

, (5)

where Fk is the fitness function in k-th iteration of the CSFD

algorithm, xmax is the fittest individual from the cluster,

the m is the cluster’s centroid (mean phenotype of individ-

uals belonging to C) and Σ is unbiased sample covariance
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matrix estimated from the cluster population by the Eq. (6)

(see e.g. [21])

Σ =
1

Card(C)−1
∑
x∈C

(x−m)⊗ (x−m) , (6)

where ⊗ stands for the tensor product symbol. Please, no-

tice, that the sum in Eq. (6) is spanned over all individuals

belonging to the cluster C, i.e., the phenotype x might be

counted more than once, if is repeatedly represented in C.

Fitness function in the (k +1)-th iteration is obtained from

the Eq. (4) by seting αi ≡ 0, i = 1, . . . ,Mk.

Big advantage of this algorithm are simplicity and speed.

However, this version may cause strong deformation of the

fitness landscape in areas which are distant from the already

found clusters, which is unacceptable. To overcome this

issue we developed so called weighted scheme described in

the next subsection.

4.3. Weighted Scheme

This type of fitness deterioration is more accurate and is

likely to produce more stable fitness that basic scheme,

cause the latter may produce sharp peaks in the fitness

landscape, because of the very aggressive fitness degen-

eration. Weighted scheme is also more complex cause it

generates more computationally intensive fitness functions.

Initial steps are the same as in basic scheme, we create

multidimensional Gaussian function for each cluster. What

is different is how we compute the new (deteriorated) fitness

is the following way

Fk+1(x) = Fk(x)+
Mk

∑
i=1

αi(x)gi(x), (7)

where the α-coefficients are given by the following equa-

tions
α1(x)+, . . . ,+αMk

(x) = 1, (8)

αi(x) = ξ (x)

(

1

ri(x)

)

, (9)

1

ξ (x)
=

1

r1(x)
+, . . . ,+

1

rMk
(x)

, (10)

where ri(x) = ‖x−mi‖ is the distance between x and the

Ci centroid mi (see Fig. 7). So in order to compute fit-

Fig. 7. The coefficient αi is inversely proportional to the distance

from the center of cluster Ci to the x. αi may be seen as the

impact Ci has on x.

ness for a given individual x (more correctly for ph(x))
we have firstly compute distances ri(x). Then we compute

ξ (x) from the Eq. (10), next the α-coefficients from the

system Eqs. (8) and (9), and finally the fitness value from

Eq. (7). α-coefficients are computed separately for each

new individual and this is why this method is more costly

than the previous one.

From the Eqs. (7)–(10) it is clear that regions of do-

main which are distant from clusters found in previous

iterations of the algorithm are very little affected by the

crunching functions which is a big advantage over the ba-

sic scheme. However, experiments shows that the basic

scheme yields very good results and is preferable over the

weighted scheme due to the lower computational cost of

the former.

4.4. Crunching Function Adjustment

Because of the fast convergence of populations generated

by the GA algorithm to the local solutions and the features

of the Algorithm 4 used to increase accuracy of the de-

terioration process, clusters sometimes become very dense

in areas close to the local minimizers. Gaussians created

for such clusters does not approximate a basin of attraction

well, speaking informally: Gaussian functions created for

such clusters consist of high and thin peaks which deterio-

rate only the area inside the cluster, only the narrow basin

of attraction in which the cluster resides. To overcome this

issue we developed so called Crunching Function Adjust-

ment (CFA) algorithm described below.

We use sample covariance matrix as an estimator (see [21]),

which is extremely sensitive to outliers. However we may

take this property as our advantage and incorporate it CFA

algorithm. Having given a cluster of points the CFA algo-

rithms works as follows:

• We estimate the covariance matrix Σ and then com-

pute its N eigenvectors (N = dim(V ) is the dimension

of the problem space). They are ortogonal one to

each other and define the orientation of the Gaussian

“bell”.

• For each eigenvector vi we generate two points pi, pi

called leading marks

pi = m+
√

λi vi.

pi = m−
√

λi vi. (11)

where m ∈ V is the cluster’s centroid and λi is an

eigenvalue of the eigenvector vi.

• Then we add these 2N generated leading marks to the

initial multiset which constitute a cluster, and com-

pute new covariance matrix.

• Because the sample covariance matrix is very sensi-

tive to leading marks, the resulting covariance matrix

produces a Gaussian function whose “bell hypersur-

face” is more stretched in directions of eigenvectors.
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Please notice, that the improvement introduced above is

purely heuristic, having no precise mathematical motiva-

tion. It was designed only for deterioration performed by

Gauss functions and positively verified for 2D benchmarks

(see Subsection 5.2) so its usefulness in other cases in un-

known.

Remark 1: The whole consideration leading to define

CSFD was performed for GOPs of finding local/global min-

imizers. It can be easily reformulated for GOPs of finding

local/global maximizers for which the equivalent minimiza-

tion problem can be established. In this case the landscape

deterioration consists in “leveling hills” instead of “filling

valleys”. The particular class of such maximization GOPs

is associated with continuous objectives (fitnesses) F de-

fined on compacts in R
N . In such cases we can set the

new fitness as −F plus the maximum value of F over the

search domain in order to obtain the equivalent minimiza-

tion problem.

5. Experiments and Comparison

with other Algorithms

The aim of our experiments is to show the efficiency of

the Cluster Supported Fitness Deterioration CSFD in find-

ing basins of attraction of local solutions. We also want

to present a simple comparison with other strategies, espe-

cially the ESSS-DOF [9] described in Subsection 1.3.

5.1. Genetic Engine

The CSFD strategy uses the Simple Evolutionary Algorithm

(SEA). In contrast to the Simple Genetic Algorithm (SGA),

SEA uses a real values as a parameters of the chromosome

in populations without performing coding and encoding

process before calculates the fitness values of individuals

(see e.g. [3]). Namely, SEA is more straightforward, faster

and more efficient than SGA.

We use the standard genetic operators for real-valued rep-

resentation:

• Crossover: Y = x1 + N(mean,σc)(x2 − x1), where

x1,x2 are individuals, N(mean,σc) stands for the

multivariate normal distribution, mean = x1+x2
2

is

a [x1,x2] centroid, σc is the parameter used to control

exploration and exploitation of the SEA.

• Mutation: y = x+N(0,σm), where x is the individual

to be mutated, σm the configurable mutation param-

eter.

We want the genetic engine to be cheap and converge very

quickly to local solutions, so we may efficiently deterio-

rate found basins of attraction in subsequent iterations. To

improve the convergence of the population maintained by

SEA we use proportional selection and we increase the ex-

ploitation capabilities of the SEA using proper parameters,

usually: σc ∈ [0.1,0.3], σm ∈ [0.4,1.0], depending on the

problem.

5.2. Test Functions

In order to visualize the deterioration process we use three

2D test functions:

• Rastrigin:

F(x) = 20 + ∑2
i=1(x2

i −10cos(2πxi)) (12)

for x1,x2 ∈ [−4,4].

• Langermann:

F(x) = ∑5
j=1 c j exp(− 1

π ((x1−a j)
2 +(x2−b j)

2 ))

cos(π ((x1−a j)
2 +(x2−b j)

2 ))+ 5,

a = (3,5,2,1,7), b = (5,2,1,4,9), c = (1,2,5,2,3)
(13)

for x1 ∈ [0,4], x2 ∈ [−1,3].

• Griewangk:

F(x) = 1
4000 ∑2

i=1 x2
i − Π2

i=1 cos
(

xi√
i

)

+ 1 (14)

for x1,x2 ∈ [−4,4].

W decide to handle maximization GOPs associated with

benchmarks Eqs. (12), (13), (14) because their results can

be more expressively presented then the equivalent mini-

mization ones. The CSFD instance dedicated to maximiza-

tion problems were utilized (see Remark 1).

5.3. CSFD Initial Parameters

In each of the tests we use the same set of initial values

for algorithm’s parameters. The Cluster Supported Fitness

Deterioration needs the following parameters to be config-

ured:

• popSize – population size of the genetic engine used

in CSFD; it is advisable to use small population

to minimize the fitness computation costs; usually:

40 ≤ popSize ≤ 100.

• ε and minPts – OPTICS generating distance and min-

imum number of points in ε-neighborhood (see Sub-

section 3.1); the values for the ε should be ’large

enough’ to allow the the creation of proper order-

ing, usually ε ∈ [0.5,1.0] depending on the selection

pressure. minPts should be chosen as follows:

minPts =











popSize
4

if 10≤ popSize
4
≤ 20

10 if
popSize

4
< 10

20 if 20 <
popSize

4
.

(15)

• σc and σm – standard deviations used for the

crossover and mutation respectively (see Subsec-

tion 5.1).

• mutationProb – mutation probability (crossover is al-

ways performed).
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Fig. 8. Original (at the top) and detoriated fitness landscape: (a) of the Rastrigin function seen in the 33th, 45th and 64th interation of

the CSFD strategy respectively. Parameters: ε = 0.7, minPts = 12, popSize = 50, σc = 0.1, σm = 0.5; (b) of the Langermann function

seen in the 1th, 8th and 16th interation of the CSFD strategy respectively. Parameters: ε = 0.7, minPts = 12, popSize = 80, σc = 0.1,

σm = 0.5; (c) of the Griewangk function seen in the 21th, 51th and 69th iteration of the CSFD strategy respectively. Parameters: ε = 0.7,

minPts = 12, popSize = 50, σc = 0.1, σm = 0.5.

5.4. Efficiency Measures and CSFD Results

We will use two simple measures in order to evaluate the

deterioration quality. The first one was the number of rec-

ognized basins of attraction NBA. The basin of attraction of

the local maximizer is considered as recognized by CSFD

if the cluster of individuals was established and the cluster

extension is wholly included in the basin.

The second measure, called the degree of deterioration

DoD, is defined by the following formula:

DoD =
Fmax

0 −Fmax
M

Fmax
0 −Fmin

0

, (16)

where M is the number of iterations performed by the CSFD

strategy, Fmax
0 denotes the maximum value of the fitness

at the beginning of the algorithm (0-iteration), similarly

Fmin
0 is the minimum value of the fitness function at the

beginning of the algorithm and Fmax
M is the maximum value

of the fitness in the last iteration of the algorithm. DoD

might be also expressed in percentage.

Table 1

Results of experiments (CSFD algorithm)

Function NBA DoD

Rastrigin 64/64 0.64

Langermann 16/18 0.59

Griewangk 4/4 0.84

CSFD was run several times for each of the objective

Eqs. (12), (13), (14). The most typical behavior of this
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strategy in case of each objective are depicted in Fig. 8.

Moreover Table 1 gathers the metrics values for these com-

putations.

The best performance was obtained for the Griewangk

benchmark for which all local maxima were encountered

and for which the maximum degree of fitness leveling 84%

was obtained. All local maxima were also recognized in

the case of the Rastrigin function, but the degree of deterio-

ration was only 64%. The Langermann benchmark became

most difficult for CSFD, since the degree of deterioration

was only 59% and two basins of attraction (out of eighteen

ones) remained unknown.

5.5. Comparison with other Algorithms

Experiments were also performed to investigate the per-

formance of ESSS-DOF strategy (see Algorithm 1). This

strategy was implemented according to the description con-

tained in [12], [13]. Similarly as in the case of CSFD,

ESSS-DOF was run several times for each objective

Eqs. (12), (13), (14). Its most typical behavior is illus-

trated in Fig. 9. These snapshots show the iterations in

which fitness was degenerated (i.e., when trap test proce-

dure indicated that the population converged to the local

solution).

Table 2 shows the comparison of metric values obtained by

both ESSS-DOF and CSFD. Here we will say that ESSS-

DOF recognizes the basin of attraction if the deterioration

component Eq. (1) with the center in its area was intro-

duced.

Table 2

Comparison of ESSS-DOF with CSFD algorithms

ESSS-DOF CSFD

Function NBA DoD NBA DoD

Rastrigin 8/64 0.14 64/64 0.64

Langermann 9/18 0.36 16/18 0.59

Griewangk 4/4 0.60 4/4 0.84

The current ESSS-DOF implementation never found all

basins of attraction and the DoD measure obtained was

significantly worst.

We may observe that the ESSS-DOF is efficient only for

simple multi-modal functions with small amount of solu-

tions in the problem domain (e.g., Griewangk function, see

Fig. 9(c)), but it performs badly for more complex prob-

lems (e.g., Rastrigin function, see Fig. 9(a)). This might

be attributed to the fact that the fitness deterioration in

ESSS-DOF strategy is inaccurate due to the lack of con-

straints which might prevent degradation of a large area

of the domain. For highly multimodal problems the sam-

ple might be spread across many neighboring basins of

attraction, which is deceptive for the trap test procedure

and causes the Gaussian function to degrade to large area,

including unexplored regions of the search space. Strong

degradation of the large area of domain prevents the search

process from finding new promising individuals, which fol-

lows from the stopping criterion of ESSS-DOF (see Sub-

section 1.3) resulting in the premature termination of the

algorithm.

On the other hand the CSFD strategy which includes ac-

curate clustering strategy may properly handle the situation

in which individuals from the population reside in many

basins of attraction. The algorithm is able to locate clusters

separately in each basin, rejecting the “noisy” individuals

and perform deterioration only in the areas of cluster ex-

tensions, which allow for successive search in unexplored

regions.

A further advantage of CSFD algorithm compared to ESSS-

DOF and other sequential niching methods is that the CSFD

is resistant to small changes of the input parameters (speci-

fied in Subsection 5.3). Roughly speaking, there are a wide

range of initial parameters for which we may expect the al-

gorithm to be effective. Choosing reasonable values for

σc and σm, and OPTICS parameters as specified in Sub-

section 5.3, would very likely yield a good results.

6. Conclusions

• Sequential niching with fitness deterioration is one

of the most promising stochastic strategies for ana-

lyzing multi-modal global optimization problems in

the continuous domains embedded in vector metric

spaces.

• Existing instances of the strategy mentioned above

exhibits several disadvantages: huge memory com-

plexity of memorizing deteriorated regions (e.g.,

CGS with raster clustering); unsatisfactory accuracy

of the fitness approximation that lead to the incorrect

deterioration and finally may lead to removing indi-

viduals from unchecked areas or the multiple check

of non-promising areas already browsed; dependency

on the evolutionary technique used.

• The discussion presented in Subsections 1.3, 1.4, 1.5

clearly shows the way of necessary improvements.

The proposed deterioration strategy CSFD combines

the low memory complexity of the exponential fitness

improvement with the accuracy of clustering based

techniques.

• The CSFD performs very well for 2D complex multi-

modal functions like the ones used for testing (see

Subsection 5.2) being also well suited to detect the

basins of attraction of the local and global extrema

as specified in Subsection 5.5. Exhaustive testing for

higher dimensional problems will be the subject of

future research.

• Performed experiments show that we can expect sat-

isfactory results when the GA utilizes genetic oper-

ators based on the normal distribution. Fitness pro-

portionate selection causes satisfactory convergence

to local solutions and the normal distribution based

reproduction operators tends to produce populations

with useful information about fitness landscape.
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Fig. 9. ESSS-DoF original (at the top) and detoriated fitness landscape: (a) of the Rastrigin function; (b) of the Langerman function;

(c) of the Griewangk function. Parameters:p = 5%, ntrap = 30, σc = 0.1, σm = 0.4.

• The Hierarchical Genetic Strategy (HGS) (see [10],

[16], [22]) would be very efficient from the stand-

point of the deterioration process. This strategy per-

forms an efficient concurrent search in the optimiza-

tion landscape by many small populations. Creation

of these populations is governed by dependent ge-

netic processes with low complexity. Moreover, HGS

is likely to find many solutions in a single run of the

algorithm and that the hierarchy of populations gen-

erated by the algorithm are rapidly convergent.

• High accuracy of deterioration offered by the CSFD

results from the positive synergy of two mechanisms:

clusters obtained from the modified OPTICS (see Al-

gorithm 4) and improved by leading marks approxi-

mate well basins of attraction of local/global extrema;

the form of the weighted deteriorartion function (7)

and form of weights (see formulas (8), (9), (10))

maximizes the effect of deterioration over the area

of cluster extensions i.e. the area of basins of ex-

trema already recognizes and prevent degradation of

unexplored regions.

• Algorithm 4 which increases fitness deterioration ac-

curacy performs well also in cases when the clusters

are not convex e.g., for Langermann function (see

Fig. 8(b)).

• Sequential niching obtained by CSFD preserves the

asymptotic guarantee of success. The probability of

sampling is significantly decreased over the cluster

extensions but still greater then zero, so this regions

are not excluded from future sampling, even in case

of inaccurate deterioration. It seems to be the ad-

vantage over the sequential niching based on “tabu”

techniques.
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• A simple comparative 2D tests shows superiority

of CSFD over the ESSS-DoF strategy. It is caused

mainly by using the accurate clustering strategy OP-

TICS that allow for precise location of the central

parts of basins of attraction of local solutions and

then perform fitness deterioration only in these ar-

eas. This feature prevents the premature termination

allowing the further search in the unexplored regions.
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North Holland, 1975.

[6] D. Goldberg, Genetic Algorithms and their Applications. Addison-

Wesley, 1989.

[7] J. Arabas, Wykłady z algorytmów ewolucyjnych. WNT, Warsaw,

Poland (in Polish).

[8] S. W. Mahfoud, “Niching Methods”, in Handbook of Evolutionary
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